

INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA

SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA

UNIDAD PROFESIONAL "ADOLFO LÓPEZ MATEOS"

IDENTIFICACIÓN DE FUENTES ARMÓNICAS POR MÉTODOS DE ESTIMACIÓN EN SISTEMAS ELÉCTRICOS DE POTENCIA

T E S I S

QUE PARA OBTENER EL GRADO DE

MAESTRO EN CIENCIAS CON ESPECIALIDAD EN INGENIERÍA ELÉCTRICA

P R E S E N T A

LUIS ALBERTO HERNÁNDEZ ARMENTA

MÉXICO, D.F. 2012

-up-	ACTA DE REVISIÓN DE TEST	7					
	ACTA DE REVIDION DE TEDI	,					
En la Ciudad de México, D. I	F. siendo las 14:00 ho	oras de	el día		31	del	mes
Octubre del 2012 se reuniero	n los miembros de la Comisión Revis	ora de	e la Te	esis, d	esign	ada	
por el Colegio de Profesores de Estudio	s de Posgrado e Investigación de			ES	IME	-Zaca	tenco
para examinar la tesis titulada:							
"IDENTIFICACIÓN DE F	UENTES ARMÓNICAS POR MÉ	TOD	OS D	E ES	TIM	ACIÓ	N
EN SIS	TEMAS ELÉCTRICOS DE POTE	NCIA	\ "				
Presentada por el alumno:							
Apeluido paterno	ARMENTA Anellido materno		LU	JIS A	http://www.allerenderg	RTO	
Apendo paterno	Con registro:	в	1	0	2	1	6
	2011128.01101		-		-	1	
aspirante de:							
MAESTRO H	EN CIENCIAS EN INGENIERÍA	ELÉC	TRI	CA			
	LA COMISIÓN REVISORA Los Directores(a) de tesis						
Quid Jomero	LA COMISIÓN REVISORA Los Directores(a) de tesis				9		
Dauid Lomeno DR. DAVID ROMERO ROMERO	LA COMISIÓN REVISORA Los Directores(a) de tesis	DR	(. JAI	1 ME I	A ROBI	ES C	GARG
David Lomero DR. DAVID ROMERO ROMERO	LA COMISIÓN REVISORA Los Directores(a) de tesis	DR	. JAI	ME I		EES C	GARG
DR. DAVID ROMERO ROMERO Presidente	LA COMISIÓN REVISORA Los Directores(a) de tesis	DR	JAI Segun	ME I do Voc		ES C	GARC
Dauid Lomero DR. DAVID ROMERO ROMERO Presidente Duum	LA COMISIÓN REVISORA Los Directores(a) de tesis	DR	L. JAI Segun	L. MET do Voca		E CES C	GARC
DR. DAVID ROMERO ROMERO Presidente DR. DANIEL OLGUINSAI	LA COMISIÓN REVISORA Los Directores(a) de tesis	DR	L. JAI Segun	do Voc		LESC	GARC
DR. DANIEL OLGUINSAI	LA COMISIÓN REVISORA Los Directores(a) de tesis	JAIM	Segun	do Voca	AOBI		GARG
DR. DAVID ROMERO ROMERO Presidente DR. DANIEL OLGUINSAI Tercer Vocal	LA COMISIÓN REVISORA Los Directores(a) de tesis	JAIM	Segun	MET MET DBLE		EES C	GARC
DR. DANIEL DANIEL DR. DANIEL DR. DANIEL PRIZ VEC	LA COMISIÓN REVISORA Los Directores(a) de tesis	DR	Segun			LES C	GARC
DR. DAVID ROMERO ROMERO Presidenta DR. DANIEL OLGUINSAI Tercer Vocal DR. DANIEL ROIZ VEO	LA COMISIÓN REVISORA Los Directores(a) de tesis	DR JAIM CARI P2	L JAI Segun LE RC Secret				GARC A
DR. DAVID ROMERO ROMERO Presidente DR. DANIEL OLGUINSAI Tercer Vocal DR. DANIEL ROIZ VEO	LA COMISIÓN REVISORA Los Directores(a) de tesis		LIERC Secret	MET do Voci DBLE tario		EES C	GARC A
DR. DAVID ROMERO ROMERO Presidente DR. DANIEL OLGUINSAI Tercer Vocal DR. DANIEL ROIZ VEO	LA COMISIÓN REVISORA Los Directores(a) de tesis	JAIM CARI PJ	LIE RC Secret	MET do Voca DBLE tario		ARCÍ	A
DR. DAVID ROMERO ROMERO Presidente DR. DANIEL OLGUINSAI Tercer Vocal DR. DANIEL ROIZ VEO	LA COMISIÓN REVISORA Los Directores(a) de tesis	DR JAIM CARI P2	LE AC	MET do Voca DBLE tario		ARCÍ	A

INSTITUTO POLITECNICO NACIONAL

SECRETARÍA DE INVESTIGACION Y POSGRADO

CARTA CESIÓN DE DERECHOS

En la Ciudad de México, Distrito Federal, el día <u>31 del mes de Octubre del año</u> <u>2012</u>, el que suscribe <u>Luis Alberto Hernández Armenta</u>, alumno del Programa de Maestría en <u>Ciencias en Ingeniería Eléctrica</u> con número de registro <u>B102162</u>, adscrito a la <u>Sección de Estudios de Posgrado e Investigación de</u> <u>Ia ESIME Unidad Zacatenco del IPN</u>, manifiesta que es autor(a) intelectual del presente trabajo de Tesis bajo la dirección del <u>Dr. David Romero Romero</u> y el <u>Dr. Jaime Robles García</u> y cede los derechos del trabajo intitulado <u>"Identificación de Fuentes Armónicas por Métodos de Estimación en</u> <u>Sistemas Eléctricos de Potencia"</u>, al Instituto Politécnico Nacional para su difusión, con fines académicos y de investigación.

Los usuarios de la información no deben reproducir el contenido textual, gráficas o datos del trabajo sin el permiso expreso del autor y/o directores del trabajo, este puede ser obtenido escribiendo a las siguientes direcciones, gorson1@hotmail.com, dromero@ieee.org y/o jarobles@ipn.mx. Si el permiso se otorga, el usuario deberá dar el agradecimiento correspondiente y citar las fuentes del mismo.

Elfarth

Ing. Luis Alberto Hernández Armenta

AGRADECIMIENTOS

A mis padres que brindaron el apoyo incondicional y sabios consejos en todo momento.

A mi esposa Anabelle y mi hija Michelle que formaron parte de este camino, fueron mi apoyo y la fuerza para no darme por vencido.

A los Doctores David Romero Romero y Jaime Robles García por ser los guías en este proceso, por su tiempo y los conocimientos transmitidos.

A los Doctores Daniel Olguín Salinas, Ricardo Mota Palomino, Daniel Ruiz Vega y Jesús Reyes por los comentarios hechos hacia este trabajo.

Al M. en C. Sergio Baruch quien además de un gran profesor es un excelente amigo, y del cual siempre obtuve el tiempo para un consejo o su orientación.

A mis compañeros con los que juntos compartimos este viaje de mas de dos años.

Al Instituto Politécnico Nacional y al Conacyt por el apoyo económico dado durante el desarrollo de este trabajo.

RESUMEN

El análisis de armónicas en Sistemas Eléctricos de Potencia es importante debido al incremento de cargas no lineales y dispositivos controlados por electrónica de potencia en la red. Las fuentes armónicas pueden generar problemas en la red, como resonancias disparos intempestivos en cargas sensibles, degradación de la capacitancia interna, calentamiento excesivo en los transformadores, etc.

Las compañías suministradoras de energía eléctrica a menudo desconocen la ubicación de las fuentes armónicas en la red, mismas que pueden no cumplir los estándares de calidad. Por ello se han desarrollado técnicas para estimar la ubicación de estas fuentes, y en caso de sobrepasar los niveles especificados en las normas, aplicar penalizaciones.

El objetivo principal de este trabajo es identificar la ubicación de fuentes armónicas en sistemas eléctricos de potencia empleando métodos de estimación de estado basados en cuadrados mínimos. (Investigación de los métodos Heydt y Nguyen).

Se usaron dos sistemas de prueba de la literatura; uno de 5 nodos y el otro de 14. Para comprobar los resultados se utilizaron soluciones dadas en la literatura. De los resultados de los sistemas de prueba se observa que el método de Heydt no identificó la fuente de armónicas para el sistema de 5 nodos, mientras que el método de Nguyen encontró en todos los sistemas la localización de las fuentes de armónicas. El método de Heydt tuvo resultados exactos en los sistemas de 14 nodos. El método de Nguyen se probó también con error en las mediciones sin buenos resultados.

Se desarrollaron programas con los dos métodos de estimación de estado y un programa de flujos armónicos elaborados en FORTRAN.

ABSTRACT

The harmonic analysis of Electric Power Systems is important due to the increase in nonlinear loads and electronically controlled devices in the network power. Harmonic sources can lead to problems in the network, such as tripping resonances in sensitive loads, internal capacitance degradation, overheating in transformers, etc..

The electricity supply companies are often unaware of the location of harmonic sources in the network, which may not comply the same quality standards. Therefore we have developed techniques for estimating the location of these sources, and in case of exceeding the levels specified in the rules, apply penalties.

The main objective of this paper is to identify the location of harmonic sources in power systems using state estimation methods based on least squares. (Research methods Heydt and Nguyen).

There were two test systems from literature; a system of 5 nodes and the other of 14. To test the results were used solutions given in the literature. From the results of test systems it is noted that the Heydt method doesn't identify the harmonic source for the 5 nodes system, whereas the Nguyen's method found in the location of sources of harmonics of all systems. The Heydt's method was very accurate results in 14 nodes systems. The method was also tested with Nguyen measurement error without accurate outcomes.

Programs were developed with the two methods of state estimation and a harmonic flow program elaborated in FORTRAN.

CONTENIDO

ACTA DE REVISIÓN DE TESIS	II
CARTA CESIÓN DE DERECHOS	III
AGRADECIMIENTOS	IV
RESUMEN	V
ABSTRACT	VI
Contenido	VII
Lista de Figuras	XII
Lista de Tablas	XIV
SIGLAS Y SIMBOLOGÍA	XIX

CAPÍTULO 1 INTRODUCCIÓN

1.1	Introducción	1
1.2	Estado del Arte	2
1.3	Objetivo	4
1.4	Justificación	4
1.5	Aportaciones	5
1.6	Alcances	5
1.7	Estructura de la tesis	6

CAPÍTULO 2 ESTUDIOS DE FLUJOS ARMÓNICOS EN EL DOMINIO DE LA FRECUENCIA PARA SISTEMAS ELÉCTRICOS DE POTENCIA

2.1 Introducción

2.2	Método de Inyecciones de Corriente	8
2.3	Análisis Armónico Iterativo (Método de Gauss)	10
2.4	Estudio de Flujos de Potencia Armónico por el Método	
	de Newton – Raphson	13

CAPÍTULO 3 IDENTIFICACIÓN DE FUENTES ARMÓNICAS USANDO ESTIMACIÓN DE ESTADO

3.1	Introducción	23
3.2	Método de Cuadrados Mínimos	24
3.3	Método de Cuadrados Mínimos para la Identificación de	
	Fuentes Armónicas	26
	3.3.1 Estimador de Estado Propuesto por Heydt en [15]	27
	3.3.2 Estimador de Estado Propuesto por Nguyen en [19]	31

CAPÍTULO 4 RESULTADO DE APLICACIÓN Y DESCRIPCIÓN DE PRUEBAS

4.1	Introdu	acción	35
4.2	Estimación de un Sistema de 5 Nodos con una Fuente de		
	Armór	licas	35
	4.2.1	Estimación de un Sistema de 5 Nodos con una Fuente	
		de Armónicas sin Error en las Mediciones por el	
		Método de Heydt [15].	37
	4.2.2	Estimación de un Sistema de 5 Nodos con una Fuente	
		de Armónicas sin Error en las Mediciones por el	
		Método de Nguyen [19].	40
	4.2.3	Estimación de un Sistema de 5 Nodos con una Fuente	
		de Armónicas con Error en las Mediciones por el	
		Método de Nguyen [19].	42
4.3	Estima	ción de un Sistema de 14 Nodos con una Fuente de	

	Armór	nicas	47
	4.3.1	Estimación de un Sistema de 14 Nodos con una Fuente	
		de Armónicas sin Error en las Mediciones por el	
		Método de Heydt [15].	49
	4.3.2	Estimación de un Sistema de 14 Nodos con una Fuente	
		de Armónicas sin Error en las Mediciones por el	
		Método de Nguyen [19].	55
	4.3.3	Estimación de un Sistema de 14 Nodos con una Fuente	
		de Armónicas con Error en las Mediciones por el	
		Método de Nguyen [19].	62
4.4	Estima	ción de un Sistema de 14 Nodos con dos Ffuentes de	
	Armór	nicas	68
	4.4.1	Estimación de un Sistema de 14 Nodos con dos Fuentes	
		de Armónicas sin Error en las Mediciones por el	
		Método de Heydt [15].	69
	4.4.2	Estimación de un Sistema de 14 Nodos con dos Fuentes	
		de Armónicas sin Error en las Mediciones por el	
		Método de Nguyen [19].	78
	4.4.3	Estimación de un Sistema de 14 Nodos con dos Fuentes	
		de Armónicas con Error en las Mediciones por el	
		Método de Nguyen [19].	86

CAPÍTULO 5

CONCLUSIONES Y RECOMENDACIONES PARA TRABAJOS FUTUROS

5.1 Conclusiones	95
5.2 Recomendaciones para Trabajos Futuros	96
REFERENCIAS	97

APÉNDICE A INFORMACIÓN CARACTERÍSTICA DE LOS SISTEMAS DE PRUEBA

A.1 Sistema de 5 Nodos	102
A.2 Sistema de 14 Nodos	103

APÉNDICE B TEORÍA DE ARMÓNICAS

B.1 Series de Fourier	105
B.2 Coeficientes de Fourier	106
B.3 Distorsión Armónica Total (THD)	107
B.4 Distorsión Total de la Demanda (TDD)	107
B.5 Cantidades de Potencia Bajo Situaciones no Sinusoidales	108
B.5.1 Valor Instantáneo	108
B.5.2 Potencia Instantánea	108
B.5.3 Valor RMS	108

APÉNDICE C

PROGRAMA PARA EL CÁLCULO DE FLUJOS ARMÓNICOS POR EL MÉTODO DE INYECCIONES DE CORRIENTE

C.1 Rutina Principal HARM_INJ	109
C.2 Subrutina LEEDATOS	110
C.3 Subrutina LEEDATOSARM	115
C.4 Subrutina CDATOS	117
C.5 Subrutina CYBUS	119
C.6 Subrutina SOLFLUJ	121
C.7 Subrutina THD	122
C.8 Subrutina THDTOT	123
C.9 Archivo de Entrada	125
C.10 Archivo de Salida	127

APÉNDICE D

PROGRAMAS PARA LA IDENTIFICACIÓN DE FUENTES ARMÓNICAS

D.1 Métod	D.1 Método de Heydt	
D.1.1	Rutina Principal HARM_EST	130
D.1.2	Subrutina LEEDATOS	131
D.1.3	Subrutina MATR	137
D.1.4	Subrutina ESTIM	139
D.1.5	Subrutina THD	141
D.2 Archiv	vo de Entrada	144
D.3 Archiv	vo de Salida	146
D.4 Métod	lo de Nguyen	148
D.4.1	Rutina Principal HARM_EST	148
D.4.2	Subrutina LEEDATOS	149
D.4.3	Subrutina VECTORZ	156
D.4.4	Subrutina VECTORH	156
D.4.5	Subrutina ESTIM	159
D.4.6	Subrutina VOLTHARM	160
D.4.7	Subrutina THD	162
D.5 Archiv	vo de Entrada	163
D.6 Archi	vo de Salida	165

LISTA DE FIGURAS

FIG. 2.1	Diagrama de flujo del método de inyecciones	
	de corriente	9
FIG. 2.2	Carga rectificadora en el bus k	10
FIG. 2.3	Conducción en las fases a y b de un puente de Graetz	11
FIG. 2.4	Puente de Graetz durante la conmutación	12
FIG. 2.5	Método de Gauss-Seidel para el análisis armónico	
	en un sistema eléctrico de potencia	14
FIG. 2.6	Diagrama de flujo del estudio de flujos de potencia	
	armónico por el método de Newton-Raphson	21
FIG 3.1	El método de cuadrados mínimos consiste en encontrar A	
	tal que AB es un mínimo	26
FIG 3.1	Sistema de 4 nodos	27
FIG 3.2	Diagrama de flujo del estimador armónico propuesto	
	por Heydt	30
FIG 3.3	Diagrama de flujo del estimador armónico propuesto	
	por Nguyen	32
FIG 4.1	Sistema de prueba de 5 nodos	36
FIG 4.2	Sistema de prueba de 14 nodos	49
FIG C.1	Primer archivo de entrada con los datos de la red	126
FIG C.2	Segundo archivo de entrada con los datos de la fuente	
	Armónica	127
FIG C.3	Primer Sección del archivo de salida	128
FIG C.4	Segunda Sección del archivo de salida	128
FIG C.5	Tercera Sección del archivo de salida	129
FIG D.1	Primera Sección del archivo de entrada por el método de Heydt	145
FIG D.2	Segunda Sección del archivo de entrada por el método de Heydt	145
FIG D.3	Primer Sección del archivo de salida por el método de Heydt	146
FIG D.4	Segunda Sección del archivo de salida por el método de Heydt	147
FIG D.5	Tercera Sección del archivo de salida por el método de Heydt	148
FIG D.6	Primera Sección del archivo de entrada para el método	
	de Nguyen	164

FIG D.7	Segunda Sección del archivo de entrada por el método	
	de Nguyen	165
FIG D.8	Primer Sección del archivo de salida por el método de Nguyen	166
FIG D.9	Segunda Sección del archivo de salida por el método de Nguyen	166
FIG D.10	Tercera Sección del archivo de salida por el método de Nguyen	167

LISTA DE TABLAS

Tabla 2.1	Número y tipo de ecuaciones en un estudio de flujos	
	de potencia armónico por el método	
	de Newton-Raphson	18
Tabla 2.2	Número de estados para el problema de flujos de	
	potencia armónico por el Método	
	de Newton-Raphson	19
Tabla 2.3	Sub-matrices del Jacobiano	20
Tabla 4.1	Voltajes armónicos del sistema de 5 nodos	36
Tabla 4.2	Corriente Armónica de la Fuente de Armónicas	
	(Compensador Estático de Vars)	36
Tabla 4.3	Mediciones para la estimación por el método	
	de Heydt [15], sin error en las mediciones para el	
	sistema de 5 nodos	37
Tabla 4.4	Corrientes armónicas estimadas, sin error en las mediciones,	
	por el método de Heydt [15] para el sistema de 5 nodos	38
Tabla 4.5	Comparación de la corriente del Compensador Estático de Vars	
	contra los estimados, sin error en las mediciones, por el método	
	de Heydt [15] para el sistema de 5 nodos	38
Tabla 4.6	Comparación de los voltajes armónicos contra los estimados,	
	sin error en las mediciones, por el método de Heydt [15] para	
	el sistema de 14 nodos	39
Tabla 4.7	THD de los voltajes, sin error en las mediciones, por el método	
	de Heydt [15] para el sistema de 5 nodos	40
Tabla 4.8	Mediciones para la estimación por el método de Nguyen [19],	
	sin error en las mediciones para el sistema de 5 nodos	40
Tabla 4.9	Corrientes armónicas estimadas, sin error en las mediciones,	
	por el método de Nguyen [19] para el sistema de 5 nodos	41
Tabla 4.10	Comparación de la corriente del Compensador Estático de Vars	
	contra los estimados, sin error en las mediciones, por el	
	método de Nguyen [19] para el sistema de 5 nodos	42
Tabla 4.11	Comparación de los voltajes armónicos contra los estimados,	

	sin error en las mediciones, por el método de Nguyen [19]	
	para el sistema de 5 nodos	43
Tabla 4.12	THD de los voltajes, sin error en las mediciones, por el método	
	de Nguyen [19] para el sistema de 5 nodos	44
Tabla 4.13	Mediciones para la estimación por el método de Nguyen [19],	
	con error en las mediciones para el sistema de 5 nodos	44
Tabla 4.14	Corrientes armónicas estimadas, con error en las mediciones,	
	por el método de Nguyen [19] para el sistema de 5 nodos	45
Tabla 4.15	Comparación de la corriente del Compensador Estático de Vars	
	contra los estimados, con error en las mediciones, por el método	
	de Nguyen [19] para el sistema de 5 nodos	45
Tabla 4.16	Comparación de los voltajes armónicos contra los estimados,	
	con error en las mediciones, por el método de Nguyen [19]	
	para el sistema de 5 nodos	46
Tabla 4.17	THD de los voltajes, sin error en las mediciones, por el método	
	de Nguyen[19] para el sistema de 5 nodos	47
Tabla 4.18	Voltajes armónicos del sistema de 14 nodos	48
Tabla 4.19	Corriente Armónica de la Fuente de Armónicas [12-14]	48
Tabla 4.20	Mediciones para la estimación por el método de Heydt [15],	
	sin error en las mediciones para el sistema de 14 nodos	50
Tabla 4.21	Corrientes armónicas estimadas, sin error en las mediciones,	
	por el método de Heydt [15] para el sistema de 14 nodos	51
Tabla 4.22	Comparación de la corriente del Compensador Estático de Vars	
	contra los estimados, sin error en las mediciones,	
	por el método de Heydt [15] para el sistema de 14 nodos	52
Tabla 4.23	Comparación de los voltajes armónicos contra los estimados,	
	sin error en las mediciones, por el método de Heydt [15]	
	para el sistema de 14 nodos	52
Tabla 4.24	THD de los voltajes, sin error en las mediciones,	
	por el método de Heydt[15] para el sistema de 14 nodos	55
Tabla 4.25	Mediciones para la estimación por el método de Nguyen [19],	
	sin error en las mediciones para el sistema de 14 nodos	56
Tabla 4.26	Corrientes armónicas estimadas, sin error en las mediciones,	

	por el método de Nguyen [19] para el sistema de 14 nodos	57
Tabla 4.27	Comparación de la corriente del Compensador Estático de Vars	
	contra los estimados, sin error en las mediciones, por el método	
	de Nguyen [19] para el sistema de 14 nodos	58
Tabla 4.28	Comparación de los voltajes armónicos contra los estimados,	
	sin error en las mediciones, por el método de Nguyen [19]	
	para el sistema de 14 nodos	59
Tabla 4.29	THD de los voltajes, sin error en las mediciones, por el método	
	de Nguyen [19] para el sistema de 14 nodos	62
Tabla 4.30	Mediciones para la estimación por el método de Nguyen [19],	
	con error en las mediciones para el sistema de 14 nodos	63
Tabla 4.31	Corrientes armónicas estimadas, con error en las mediciones,	
	por el método de Nguyen [19] para el sistema de 14	64
Tabla 4.32	Comparación de la corriente del Compensador Estático de Vars	
	contra los estimados, con error en las mediciones, por el método	
	de Nguyen [19] para el sistema de 14 nodos	65
Tabla 4.33	Comparación de los voltajes armónicos contra los estimados,	
	con error en las mediciones, por el método de Nguyen [19]	
	para el sistema de 14 nodos	65
Tabla 4.34	THD de los voltajes, con error en las mediciones, por el método	
	de Nguyen[19] para el sistema de 14 nodos	69
Tabla 4.35	Voltajes armónicos del sistema de 14 nodos con dos	
	fuentes armónicas	70
Tabla 4.36	Corriente Armónica del Horno de Arco (arco activo)	70
Tabla 4.37	Mediciones para la estimación por el método de Heydt [15],	
	sin error para el sistema de 14 nodos con	
	dos fuentes de armónicas	71
Tabla 4.38	Corrientes armónicas estimadas, sin error en las mediciones,	
	por el método de Heydt [15] para el sistema de 14 nodos con	
	dos fuentes armónicas	72
Tabla 4.39	Comparación de la corriente del Compensador Estático de Vars	
	contra los estimados, sin error en las mediciones, por el método	
	de Heydt [15] para el sistema de 14 nodos	73

Tabla 4.40	Comparación de la corriente del Horno de arco contra	
	los estimados, sin error en las mediciones, por el método	
	de Heydt [15] para el sistema de 14 nodos	73
Tabla 4.41	Comparación de los voltajes armónicos contra los estimados,	
	sin error en las mediciones, por el método de Heydt[15]	
	para el sistema de 14 nodos con dos fuentes armónicas	74
Tabla 4.42	THD de los voltajes, sin error en las mediciones, por el método	
	de Heydt [15] para el sistema de 14 nodos	78
Tabla 4.43	Mediciones para la estimación por el método de Nguyen [19],	
	sin error para el sistema de 14 nodos con	
	dos fuentes de armónicas	79
Tabla 4.44	Corrientes armónicas estimadas, sin error en las mediciones,	
	por el método de Nguyen [19] para el sistema de 14 nodos	
	con dos fuentes armónicas	80
Tabla 4.45	Comparación de la corriente del Compensador Estático de Vars	
	contra los estimados, sin error en las mediciones, por el método	
	de Nguyen [19] para el sistema de 14 nodos	81
Tabla 4.46	Comparación de la corriente del Horno de arco contra los	
	estimados, sin error en las mediciones, por el método	
	de Nguyen [19] para el sistema de 14 nodos	81
Tabla 4.47	Comparación de los voltajes armónicos contra los estimados,	
	sin error en las mediciones, por el método de Nguyen [19]	
	para el sistema de 14 nodos con dos fuentes armónicas	82
Tabla 4.48	THD de los voltajes, sin error en las mediciones, por el	
	método de Nguyen [19] para el sistema de 14 nodos	86
Tabla 4.49	Mediciones para la estimación por el método de Nguyen [19],	
	con error para el sistema de 14 nodos con	
	dos fuentes de armónicas	87
Tabla 4.50	Corrientes armónicas estimadas, con error en las mediciones,	
	por el método de Nguyen [19] para el sistema de 14 nodos	
	con dos fuentes armónicas	88
Tabla 4.51	Comparación de la corriente del Compensador Estático de Vars	
	contra los estimados, con error en las mediciones, por el	

	método de Nguyen [19] para el sistema de 14 nodos	89
Tabla 4.52	Comparación de la corriente del Horno de arco contra	
	los estimados, con error en las mediciones, por el	
	método de Nguyen [19] para el sistema de 14 nodos	89
Tabla 4.53	Comparación de los voltajes armónicos contra los estimados,	
	con error en las mediciones, por el método de Nguyen [19] para	
	el sistema de 14 nodos con dos fuentes armónicas	89
Tabla 4.54	THD de los voltajes, con error en las mediciones, por el	
	método de Nguyen [19] para el sistema de 14 nodos	94
Tabla A.1	Datos de las líneas del sistema de 5 nodos	102
Tabla A.2	Datos de los generadores del sistema de 5 nodos	102
Tabla A.3	Datos de los flujos de potencia a frecuencia fundamental	
	del sistema de 5 nodos	102
Tabla A.4	Datos de los capacitores del sistema de 5 nodos	103
Tabla A.5	Datos de las líneas del sistema de 14 nodos	103
Tabla A.6	Datos de los generadores del sistema de 14 nodos	103
Tabla A.7	Datos de los flujos de potencia a frecuencia fundamental	
	Del sistema de 14 nodos	104
Tabla A.8	Datos de los capacitores del sistema de 14 nodos	104

SIGLAS Y SIMBOLOGÍA

SIGLAS

THD	Distorsión Armónica Total
LPQ	Bus lineal PQ
LPV	Bus lineal PV
NLPQ	Bus no lineal PQ
C.D.	Corriente Directa

SIMBOLOGÍA

h	Armónica
Н	Número total de armónicas en la red
V_h	Voltaje Armónico nodal h
I _h	Corriente Armónica nodal h
Y_h	Matriz Y_{bus} de la armónica h
k	bus
α	Ángulo de disparo del Rectificador de Graetz
*	Convolución
$i(t_0)$	Corriente inicial de C.D. del rectificador
F	Circuito del lado C.D. del rectificador modelado como una inductancia
	compuesta
R	Resistencia
Ε	Voltaje de C.D
А, ВуС	Fases del circuito
$V_{an}(t)$	Voltaje an
$V_{bn}(t)$	Voltaje bn
$V_{cn}(t)$	Voltaje <i>cn</i>
Р	Potencia Activa
Q	Potencia Reactiva
$\Delta P_i^{(1)}$	Incremento de las Potencia Activa
$\Delta Q_i^{(1)}$	Incremento de las Potencia Reactiva
$Y_{ij}^{(1)}$	Magnitud de la Admitancia del nodo <i>i</i> , <i>j</i>

$ heta_{ij}^{(1)}$	Ángulo de la Admitancia del nodo <i>i, j</i>
$z_i^{-(h)}$	Impedancia primitiva de la armónica
J _h	Matriz Jacobiana de la armónica h
Y	Variable aleatoria
η	Parámetro desconocido
Е	Error
$x_1,, x_{p-1}$	Constantes conocidas
β_j	Parámetros a estimar
Χ	Matriz de regresión
$[G]_h$	Sub-matriz que se obtienen de la matriz Y_h .
$[H]_h$	Sub-matriz que se obtienen de la matriz Y_h .
$[J]_h$	Sub-matriz que se obtienen de la matriz Y_h .
$[K]_h$	Sub-matriz que se obtienen de la matriz Y_h .
$[J^+]_h$	Pseudoinversa de $[J]_h$
H(h)	Matriz de mediciones
Z(h)	Vector de mediciones
P_g	Potencia Activa generada
Q_g	Potencia Reactiva generada
P_d	Potencia Activa demandada
Q_d	Potencia Reactiva demandada

CAPÍTULO 1 Introducción

Con el incremento de cargas no lineales y la electrónica de potencia el análisis armónico en los Sistemas Eléctricos de Potencia se ha vuelto fundamental, ya que las fuentes de armónicas pueden generar problemas de resonancia, disparos intempestivos en cargas sensibles, degradación de la capacitancia interna, falla en las celdas de los capacitores, calentamiento excesivo en los transformadores, etc.

Las compañías suministradoras desconocen la ubicación de estas fuentes, mismas que pueden no cumplir los estándares de calidad.

La ubicación de fuentes armónicas no puede ser hecha mediante mediciones en la red, ya que las armónicas se distribuyen en el sistema y es difícil identificar en que nodo se encuentran conectadas. Por ello se desarrollaron métodos para localizar las fuentes de armónicas, mismas que pueden ser penalizadas si no cumplen con la normatividad.

Los métodos de cuadrados mínimos para la identificación de fuentes armónicas están basados en el método de inyecciones de corriente, y no son iterativos, por lo que son de fácil implementación. En la literatura se han propuesto distintas metodologías [15-21, 24-25]. En este trabajo sólo se toman en cuenta los métodos propuestos por Heydt en [15] y por Nguyen en [19].

Los métodos por filtros de Kalman [20-21,24.25] son una variante de los métodos de cuadrados mínimos.

También es posible identificar fuentes armónicas con redes neuronales [23], aunque el inconveniente de estas es que se tiene que hacer una red para cada caso.

Con el estimador de estado armónico se puede obtener la corriente inyectada por la fuente armónica a la red, así como los voltajes y corrientes armónicos nodales, la Distorsión Armónica Total (THD) en el sistema, entre otros.

1.2 ESTADO DEL ARTE

La estimación de estado aplicada a los Sistemas Eléctricos de Potencia se dió alrededor de los años setentas por Fred C. Schweppe [29]. Los trabajos sobre estimación de estado en transmisión y distribución son variados; la estimación de estado para la identificación de fuentes de armónicas se propuso por primera vez por Heydt en [15] a finales de los años ochenta, en el cual propone dos metodologías, una con mediciones de Potencias nodales, y la última con mediciones de corrientes nodales, la cual está basada en el método de inyecciones de corrientes propuesto por Mahmoud en [1] a principio de los ochentas.

Los diferentes métodos para la estimación de estado armónica emplean el método de cuadrados mínimos [15-22, 24-25]. La estimación de estado armónica en redes neuronales está documentada en [23].

Por otro lado, Meliopolus en [16], propone que las mediciones de corriente sean trifásicas, y además agrega mediciones de voltaje. La estimación se realiza en parte real e imaginaria, empleando la función Lagrangiana para optimizar la solución.

Arrillaga en [17], desarrolla un estimador donde las mediciones pueden ser voltajes y corrientes armónicas nodales y además corrientes armónicas de rama. Los voltajes y corrientes armónicas estimadas se utilizan para comprobar si las fuentes inyectan o absorben armónicas de acuerdo al impacto que se tiene en la red.

Nguyen en [19] propone una extensión del método de Heydt [15], donde agrega mediciones de voltajes armónicos, clasificando los nodos en cuatro tipos de acuerdo a las mediciones que se tengan. También se propone un método para evaluar la contribución de potencia de las fuentes armónicas.

Se han desarrollado trabajos de estimación empleando los filtros de Kalman que son una derivación del método de cuadrados mínimos [20-22, 24-25]. El método de cuadrados mínimos se aplica en sistemas estáticos, mientras que los filtros de Kalman son empleados para sistemas dinámicos.

Beides y Heydt [21] emplean los filtros de Kalman para estimar por medio de mediciones de potencia real y reactiva, los voltajes en el sistema de potencia a diferentes niveles de voltaje.

Ma y Giris [22] proponen como variables de estado las inyecciones de corrientes, el problema es dependiente de la frecuencia.

1.2.1 Trabajos desarrollados en la SEPI.

Dentro de los trabajos que se han realizado en la SEPI para la identificación de fuentes armónicas se encuentra el de Montero [33], en el cual se empleó el método de redes neuronales para resolver el sistema de 5 nodos.

En cuanto a los trabajos de armónicas, en [35] Gómez analizó la sensibilidad de diferentes modelos de cargas ante las variaciones de las formas de onda de voltajes y corrientes armónicos. Luna [34] hace un estudio de flujos armónico a una red eléctrica y plantea diferentes formas para la mitigación de las armónicas en dicha red. Reyen en [36] mediante simulaciones en MatLab modeló y analizó el comportamiento de un filtro activo de corriente.

Dentro de los trabajos de estimación por cuadrados mínimos se encuentra el de Michel [37] que desarrolló un algoritmo para la estimación de estado por cuadrados mínimos en sistemas de transmisión, mientras que Trejo en [38] lo hizo para redes de distribución. Ávila en [39] analiza la robustez del Jacobiano y la matriz de Ganancias del método de cuadrados mínimos para sistemas de transmisión.

1.3 Objetivo

Investigar, desarrollar códigos y evaluar métodos para la identificación de la ubicación de fuentes armónicas por métodos de estimación.

1.4 JUSTIFICACIÓN

Debido al incremento de cargas no lineales que introducen armónicas al sistema, ha sido necesario desarrollar métodos para el análisis armónico en Sistemas Eléctricos de Potencia [1]. Estos métodos ayudan a conocer la propagación de armónicas en el sistema, lo cual puede usarse para el cálculo de capacitores, o simplemente conocer en que parte de la red se tiene mayor problema.

Las compañías suministradoras no siempre conocen la ubicación de las fuentes armónicas, por lo se han desarrollado métodos para detectar su ubicación, y así poder conocer las armónicas inyectadas a la red para que en caso de ser necesario, la compañía suministradora aplique sanciones a los consumidores.

No es posible conocer la ubicación de fuentes armónicas midiendo cada nodo de la red, ya que las armónicas se distribuyen por la red. Si se tienen varias fuentes armónicas en el sistema, no es viable fiarse en las mediciones, ya que los nodos con mayor Distorsión Armónica Total (THD) de voltaje no son los que tienen conectadas las distintas fuentes.

También los métodos para localizar las fuentes armónicas ayudan al diseño de bancos de capacitores para disminuir las armónicas en la red.

Para llevar a cabo un estudio de flujos armónicos es necesario conocer la ubicación y los datos de las distintas fuentes armónicas conectadas al sistema.

Los métodos empleados para la identificación de fuentes armónicas son: cuadrados mínimos y redes neuronales. Los métodos de cuadrados mínimos son de fácil implementación, ya que no son iterativos y deterministas, además están basados en el método de inyecciones de corriente. Las redes neuronales presentan la desventaja de que para cada caso se requiere una nueva red neuronal, lo cual las hace ineficaces en sistemas eléctricos de potencia reales.

1.5 Aportaciones

Desarrollo de una herramienta computacional en FORTRAN 90, que resuelve flujos de potencia armónicos por el método de inyecciones de corriente para más de una fuente armónica.

Desarrollo de una herramienta computacional en FORTRAN 90, que identifica las fuentes armónicas en Sistemas Eléctricos de Potencia por el método de Heydt [15] para mas de una fuente armónica.

Desarrollo de una herramienta computacional en FORTRAN 90, que identifica las fuentes armónicas en Sistemas Eléctricos de Potencia por el método de Nguyen [19] para mas de una fuente armónica.

Se verifica que los índices de Distorsión Armónica Total no identifican la ubicación de las fuentes de armónicas.

1.6 ALCANCES

Se utilizan dos métodos para identificar fuentes de armónicas en Sistemas Eléctricos de Potencia hasta para dos fuentes armónicas.

Se demostró que el THD del voltaje no es un índice que ayude a identificar fuentes de armónicas en la red.

1.7 ESTRUCTURA DE LA TESIS

Este trabajo consta de cinco capítulos y tres apéndices. El primer capítulo contiene el objetivo, justificación, estado del arte y la aportación de este trabajo.

En el segundo capítulo se describen los métodos para la solución de flujos armónicos (Método de inyecciones de corriente, Gauss-Seidel y Newton-Raphson), además de describir sus características, ventajas, desventajas, y un diagrama de flujo para facilitar el entendimiento de cada método.

El tercer capítulo presenta una breve explicación del método de cuadrados mínimos. También se comentan los dos métodos empleados para la identificación de fuentes armónicas, el Método de Heydt [15] y de Nguyen [19]; se mencionan las características de cada método, se da un diagrama de flujo para facilitar su implementación y además de enlistas sus ventajas y desventajas.

En el cuarto capítulo se enlistan los resultados obtenidos para los diferentes casos, mismos que fueron resueltos por el Método de Heydt [15] y de Nguyen [19]. El primer caso que se reporta es el de un sistema de 5 nodos con una fuente armónica sin error en las mediciones, para el segundo caso se emplea el mismo sistema pero ahora con error en las mediciones. El tercer y cuarto caso se implementa con un sistema de 14 nodos con una fuente armónica, lo que difiere es que en el tercero no hay error en las mediciones, mientras que en el cuarto si lo hay. El quinto caso emplea el mismo sistema de 14 nodos pero conectando dos fuentes armónicas, sin tener error en las mediciones, y el último caso es el mismo sistema con las mismas fuentes armónicas pero con error en las mediciones.

El capítulo 5 contiene las conclusiones y observaciones que se obtuvieron durante el desarrollo de este trabajo, además de las recomendaciones para realizar trabajos futuros.

El Apéndice A tiene los datos de los sistemas de prueba empleados para este trabajo.

El Apéndice B una explicación básica de armónicas y algunas definiciones como la Distorsión Armónica Total, Valor RMS, Series de Fourier, etc.

En el Apéndice C se encuentra el programa empleado para la solución de flujos armónicos por el método de inyecciones de corriente.

Por último el Apéndice D contiene los programas usados para la identificación de fuentes armónicas (Método de Heydt y Nguyen).

CAPÍTULO 2

ESTUDIOS DE ARMÓNICAS EN EL DOMINIO DE LA Frecuencia Para Sistemas Eléctricos De Potencia

2.1 INTRODUCCIÓN

En los últimos años ha habido un incremento en las cargas con comportamiento no lineal, como los dispositivos controlados por la electrónica de potencia, mismos que introducen armónicas al Sistema Eléctrico de Potencia. Por ello se han desarrollado varios métodos para el estudio de las armónicas en los Sistemas Eléctricos de Potencia, dentro de los cuales se encuentran los métodos en el dominio de la frecuencia y los métodos en el dominio del tiempo [1-3, 5].

Dentro de los métodos en el dominio de la frecuencia se encuentran: el método de inyecciones de corriente [1,4-7], y reformulaciones de los métodos de flujos de potencia convencionales (Gauss-Seidel [4-11] y Newton-Raphson [2-3,4-7]) para el cálculo de la penetración armónica en la red. En este capítulo se explican los tres métodos mencionados.

2.2 MÉTODO DE INYECCIONES DE CORRIENTE

El método de inyecciones de corriente consiste en cambiar las fuentes de armónicas por fuentes de corriente que inyectan corrientes armónicas al sistema y así conocer el voltaje armónico nodal y su ángulo de fase. Para poder implementar el método es necesario conocer algunos datos de la fuente armónica, como las armónicas inyectadas por la fuente al sistema y la magnitud de cada corriente. También debe realizarse un estudio de flujos de potencia convencional a la red [1].

Una vez realizados los pasos previos al método, es necesario calcular la matriz de admitancias nodales para cada armónico y resolver la siguiente ecuación algebraica:

$$I_h = Y_h V_h \tag{2.1}$$

Donde Y_h es la matriz de admitancias de la armónica h, V_h es un vector que contiene el voltaje armónico nodal h, e I_h es un vector con la corriente de la armónica h inyectada por las cargas no lineales del sistema.

Como se observa en la Ecuación (1), este método no es iterativo, por lo que su resultado se obtiene directamente. De igual forma es el método mas sencillo ya que consiste en resolver la ecuación (1) para cada armónica de la red. En la figura 2.1 se ilustra por medio de un diagrama de flujo el método de inyecciones de corriente [1].

Fig. 2.1 Diagrama de flujo del método de inyecciones de corriente

Las ventajas de la metodología descrita son que la velocidad y eficiencia del método [4]. Debido a que el método no es iterativo, siempre se obtiene una solución [4]. Para una Distorsión Armónica Total (THD) baja en los voltajes nodales del bus y de corriente de la fuente armónica, se obtienen resultados precisos [6].

Desafortunadamente, el método de inyecciones de corriente no puede ser empleado con alta penetración armónica; esto es que con un THD arriba del 5% este método se vuelve impreciso [6].

2.3 ANÁLISIS ARMÓNICO ITERATIVO (MÉTODO DE GAUSS-SEIDEL)

Para facilitar la explicación de este método, consideremos un rectificador, el cual es un puente de Graetz de seis pulsos, conectado en el bus k de un sistema de transmisión como se muestra en la figura 2.2. El ángulo de disparo de este rectificador puede expresarse como [6]:

Después de un desarrollo mostrado en [6], cuando se encuentran conduciendo las fases A y B, se tiene la siguiente corriente de fase:

$$i(t) = e^{-\frac{Rt}{F+2T}}i(t_0) + e^{-\frac{Rt}{F+2T}} * (V_{an}(t) - V_{bn}(t) - E)$$
(2.3)

Donde * denota la convolución, e $i(t_0)$ es el valor de la corriente de C.D. al principio del intervalo, F es un circuito del lado C.D. del rectificador que se modela como una inductancia compuesta, R es una resistencia y E un voltaje de C.D [6]. La

figura 2.3 muestra el circuito equivalente del rectificador cuando conducen las fases A y B [6].

Este tiempo de conducción no es el único en resolverse, ya que existen seis regiones diferentes de conducción y seis periodos de conmutación. Por ejemplo cuando conmutan las fases B y C, se tiene el circuito equivalente mostrado en la figura 2.4, y la corriente de fase es [6]:

$$i(t) = e^{\left(\frac{-Rt}{F + \frac{3}{2}T}\right)}i(t_0) + e^{\left(\frac{-Rt}{F + \frac{3}{2}T}\right)} * (V_{an}(t) - V_{cn}(t) - \frac{1}{2}V_{bn}(t)$$
(2.4)

Fig. 2.3. Conducción en las fases A y B de un puente de Graetz [6]

Fig. 2.4. Puente de Gaetz durante la conmutación [6]

Las condiciones que deben conocerse para la solución de la corriente de fase i(t) son las siguientes:

• Cuando se tiene una alimentación de voltaje desbalanceado, es necesario resolver la ecuación de corriente en forma trifásica para los seis periodos de conducción y de conmutación [6].

 Si la alimentación de voltaje es balanceada, la ecuación de corriente debe resolverse para los seis periodos de conducción y conmutación solo para la fase A. Las corrientes de las demás fases serán idénticas en magnitud y desplasadas en ángulo 120°
 [6].

• Debido a la simetría de la onda de corriente, solo es necesario obtener las corrientes para tres periodos de conducción y conmutación. Los demás serán idénticas, solo que con signo contrario [6].

• Es necesario inicializar el ángulo de disparo, se encuentra una solución para los seis periodos de conducción y conmutación; se calcula la potencia promedio por ciclo y se actualiza el ángulo de disparo, este proceso se repite hasta que la potencia especificada y la calculada concuerden con una tolerancia dada [6].

• El proceso iterativo para calcular el ángulo de disparo del convertidor puede presentar problemas de divergencia [6].

• La solución puede diferenciarse por el ángulo de disparo, por lo que se debe obtener una ecuación para actualizar el ángulo de disparo [6]:

 $\propto_{n+1} = \propto_n + \frac{\partial \propto}{\partial P} \Delta P$

• Debido a que la solución de flujos armónicos requiere del Método de Gauss-Seidel, se debe pensar en limitar el número de armónicas a analizar [6].

• Se puede modificar el algoritmo para hacer un análisis con varias cargas rectificadoras. El análisis para los inversores es el mismo [6].

La explicación dada es la forma de realizar el estudio de flujos armónicos por el método de análisis armónico iterativo, que también se resume en el diagrama de flujos de la figura 2.5.

La principal desventaja de este método es que consume demasiado tiempo computacional en su ejecución [6]. Las razones principales de esta desventaja son:

• El estudio de Gauss-Seidel debe aplicarse para cada armónica del sistema [6].

• La inicialización de los datos para el estudio armónico es mucho más complicado que para el estudio de flujos convencional [6].

• El Método de Gauss-Seidel puede presentar problemas de divergencia si la inicialización esta lejana de la solución [6].

2.4 ESTUDIO DE FLUJOS DE POTENCIA ARMÓNICO POR EL MÉTODO DE NEWTON - RAPHSON

Para realizar el cálculo de flujos de potencia armónico por el Método de Newton-Raphson, es necesario agregar el desajuste de potencia, considerando las frecuencias armónicas, y las corrientes armónicas [2-3].

Al igual que en el estudio de flujos de potencia convencional, se tienen diferentes tipos de buses, entre los cuales se encuentran los *buses lineales* y los *buses no lineales [2-3]*. El término bus lineal es aquel que no presenta una distorsión de corriente de línea cuando el voltaje de bus es sinusoidal, estos buses son los empleados en el problema de flujos de potencia convencional, por ejemplo los buses convencionales de

generación o con cargas convencionales (no rectificadores) conectadas [6]. El bus no lineal es aquel que presenta una distorsión en la corriente de línea provocada por fuentes o cargas, aunque la alimentación de voltaje sea sinusoidal, es decir buses con cargas conectadas como rectificadores, inversores, lámparas fluorescentes, etc [6].

Fig. 2.5 Método de Gauss-Seidel para el análisis armónico en un Sistema Eléctrico de Potencia

Los tipos de buses en el flujo de potencia armónico son:

• Bus compensador: es solo un bus lineal y de voltaje controlado [2-3].

• Buses lineales PQ: son buses de carga, donde se especifica la Potencia Activa y Reactiva $(P \ y \ Q)$ a la frecuencia fundamental, esto es sus cargas no introducen armónicos al sistema [2-3].

• Buses no lineales PQ: Son buses con dispositivos no lineales conectados como convertidores [2-3].

• Buses lineales PV: Son buses en los que se especifican la Potencia Activa y la magnitud del Voltaje ($P ext{ y } V$) a la frecuencia fundamental [2-3].

Puede haber buses no lineales PV, los cuales son buses de voltaje controlado donde se encuentre conectado un inversor, estos pueden considerarse de forma análoga a los buses lineales PV, pero esto no será abordado en este trabajo [2-3].

Para el caso de flujos de potencia armónico, no es conveniente emplear los voltajes en forma polar, ya que los flujos de potencia activa y reactiva no son los únicos presentes, y por ello no existe una relación entre la magnitud del voltaje y el ángulo de fase con los flujos de potencia presentes, por ello es recomendable escribir los voltajes y las corrientes en forma rectangular [6].

Debido al comportamiento del generador en la presencia de armónicos se tiene una impedancia de secuencia negativa, la cual se asume que los buses de generación existe una impedancia de lazo cerrado a tierra la cual existe solo a las frecuencias armónicas, esta impedancia es conocida como *impedancia única armónica* [6]. La impedancia de secuencia negativa puede obtenerse al aplicar un estudio de corto circuito al generador [6].

En los buses lineales PQ, se tienen las siguientes expresiones de desajuste [2-3]:

$$\Delta P_i^{(1)} = P_i^{(1)} - \left| Y_{ij}^{(1)} \right| \left| v_i^{(1)} \right| \left| v_i^{(1)} \right| \cos\left(-\theta_{ij}^{(1)}\right) - \sum_{j \neq 1} \left| Y_{ij}^{(1)} \right| \left| v_j^{(1)} \right| \left| \cos\left(-\theta_{ij}^{(1)} - \delta_j^{(1)} + \delta_i^{(1)}\right) \right|$$
(2.5)

$$\Delta Q_i^{(1)} = Q_i^{(1)} - \left| Y_{ij}^{(1)} \right| \left| v_i^{(1)} \right| \left| v_i^{(1)} \right| \sin \left(-\theta_{ij}^{(1)} \right) - \sum_{j \neq 1} \left| Y_{ij}^{(1)} \right| \left| v_j^{(1)} \right| \left| v_i^{(1)} \right| \sin \left(-\theta_{ij}^{(1)} - \delta_j^{(1)} + \delta_i^{(1)} \right)$$
(2.6)

La corriente a las frecuencias armónicas para los buses no lineales se calcula como [2-3]:

$$I_{bus}^{(h)} = Y_{bus}^{(h)} V_{bus}^{(h)}$$
(2.7)

Los voltajes armónicos en el bus están relacionados por la siguiente expresión [2-3]:

$$v_i^{(h)} = z_i^{-(h)} i_i^{(h)} \tag{2.8}$$

Donde $z_i^{-(h)}$ indica la impedancia primitiva, mientras que el superíndice (**h**) el armónico estudiado.

Para el caso de los buses PQ no lineales, se tomará en cuenta cuando el bus es un rectificador [2-3]. Debido a que un inversor tiene las mismas características de un rectificador, es sencillo extender el análisis [2-3]. En lo que respecta a las lámparas fluorescentes y de descarga de gas, hay un programa comercial que realiza el análisis de armónicas, y no ha existido nada nuevo al respecto [6].

Dado un bus de voltaje y un ángulo de disparo, es posible encontrar las corrientes armónicas del convertidor con la siguiente ecuación [2-3]:

$$i_i^{(h)} = f_1(v_i^{(h)}, \alpha) \qquad h = 1, 2, 3, \dots, H$$
 (2.9)
Donde \propto es el ángulo de disparo y *H* es la armónica de mayor orden. La potencia activa es [2-3]:

$$P_i^{(1)} = f_2(v_i^{(h)}, \alpha)$$
(2.10)

Por ultimo las expresiones de desajuste para nos buses PQ no lineales es [2-3]:

$$\Delta P_i^{(1)} = 0 \tag{2.11}$$

$$\Delta Q_i^{(1)} = 0 \tag{2.12}$$

En los buses lineales PV, el desajuste en la potencia activa es [2-3]:

$$\Delta P_i^{(h)} = 0 \tag{2.13}$$

Y también una expresión que incluya la impedancia única armónica de los generadores explicada anteriormente [2-3]:

$$v_i^{(h)} - z_i^{-(h)} i_i^{(h)} = 0 (2.14)$$

El número y tipo de ecuaciones se muestra en la tabla 2.1, mientras que la tabla 2.2 enlista el número de incógnitas [6].

Para el caso de flujos de potencia armónicos por el Método de Newton-Raphson el Jacobiano J_h queda de la siguiente manera [6]:

$$J_h = \begin{pmatrix} J_1 & J_2 & J_3 \\ J_4 & J_5 & J_6 \\ J_7 & J_8 & J_9 \end{pmatrix}$$
(2.15)

La tabla 2.3 muestra un resumen de las sub-matrices que forman el Jacobiano J_h [6].

	<i>po</i>				
Tipo de bus	Tipo de ecuación	Forma (de la ecuación	Válido para el armónico h	Numero de ecuación
	MP,MQ	Δ	$P^{(1)} = 0$	1	$2n_{lpq}$
LPQ		Δ	$Q^{(1)} = 0$		
	CC	$I_{hus}^{(h)} -$	$Y_{hus}^{(h)}V_{hus}^{(h)} = 0$	$1 < h \leq H$	$2(H-1)n_{lpq}$
	ZL	$v_i^{(h)} -$	$z_i^{-(h)} i_i^{(h)} = 0$	$1 < h \leq H$	$2(H-1)n_{lpq}$
		ι - ι		Subtotal	4Hn _{lpq}
	FTC	$i_i^{(h)} - f_1$	$\left(v_{i}^{(h)}, \boldsymbol{\propto}_{i}\right) = 0$	$1 < h \le H$	2Hn _{nlpq}
NLPQ	CPC	$P_{h}^{(1)} -$	$f_2\left(v_i^{(h)}, \alpha_i\right)$	1	n_{nlpq}
~			= 0		
	MP, MQ	Δ.	$P^{(1)} = 0$	1	2n _{nlpq}
		Δ	$Q^{(1)} = 0$		
	CC	$I_{bus}^{(h)} -$	$Y_{bus}^{(h)}V_{bus}^{(h)} = 0$	$1 < h \leq H$	$2(H-1)n_{nlpq}$
				Subtotal	$4(H+1)n_{nlpq}$
	MP	Δ	$P^{(1)}=0$	1	n_{lpv}
LPV	НО	$v_i^{(h)} -$	$z_i^{-(h)}i_i^{(h)} = 0$	$1 < h \leq H$	$2(H-1)n_{lpv}$
	CC	$I_{bus}^{(h)} -$	$Y_{bus}^{(h)}V_{bus}^{(h)} = 0$	$1 < h \leq H$	$2(H-1)n_{lpv}$
				Subtotal	$4(H-3)n_{lpv}$
Número total	de ecuaciones		$4Hn_{lpq} + 4($	$H+1)n_{nlpq}+4($	$(H-3)n_{lpv}$
			Nomenclatura	L	
7	Tipos de bus			Tipos de ecua	ción
			CC	Continuidad de la	corriente
I DO			CPC	Cálculo de la pote	encia del convertidor
LPQ	Bus lineal PQ		FIC	FFT de la corrien	te del convertidor
	Bus lineal PV		HO	Unica impedancia	a armonica
NLPQ	Bus no lineal I	Y	MP MO	Desajuste de Pote	ncia
1			MQ	Desajuste de pote	ncia reactiva

Tabla 2.1 Número y tipo de ecuaciones en un estudio de flujos de potencia armónicopor el método de Newton-Raphson [6]

La metodología para la solución de los flujos de potencia armónico por el Método de Newton-Raphson consta en los siguientes pasos [2-3]:

ZL

Impedancia de la carga

1.- Se obtiene una solución de la red por el Método de Newton-Raphson convencional (es decir a la frecuencia fundamental) [2-3,6].

2.- Se inicializan las variables de estado y se calcula el Jacobiano. Ya que el Jacobiano es muy disperso se recomienda usar técnicas de esparsidad [2-3, 6].

3.- Se factoriza el Jacobiano en la Matriz triangular superior y en la matriz triangular inferior [2-3,6]:

$$J_h = (L)(U) \tag{2.16}$$

4.- Una vez factorizado el Jacobiano, se emplea la siguiente fórmula para actualizar [2-3,6]

$$\Delta F = -(L)(U)\Delta X \tag{2.17}$$

Donde ΔF es el vector con las expresiones de desajuste y ΔX es el vector de correcciones de las variables de estado *X*.

5.- Una vez encontradas las correcciones ΔX se actualizan los valores [2-3,6]

$$X_{k+1} = X_k + \Delta X \tag{2.18}$$

6.- Este proceso continua hasta que el vector de desajuste es lo suficientemente pequeño.

La figura 2.6 muestra un diagrama de flujo del método de Newton-Raphson para el cálculo de flujos de potencia armónicos.

Tabla 2.2. Número de estados para el problema de flujos de potencia armónico por el Método de Newton-Raphson [6]

Variable de estado	Bus LPQ	Bus NLPQ	Bus LPV						
$ \mathbf{V}^{(1)} $	n_{lpq}								
$\mathbf{\delta}^{(1)}$			n_{lpv}						
¢		n _{nlpq}							
I ^(h)	$2(H-1)n_{lpq}$	$2(H-1)n_{nlpq}$	$2(H-1)n_{lpv}$						
h>1									
V ^(h)	$2(H-1)n_{lpq}$	$2(H-1)n_{nlpq}$	$2(H-1)n_{lpv}$						
h>1									
$\mathbf{I}^{(1)}$		n_{nlpq}							
V ⁽¹⁾		n_{nlpq}							
Total	$4Hn_{lpq}$	$(4H+1)n_{nlpq}$	$(4H - 3)n_{lpv}$						

Sub-matriz		Filas			Columnas	
	Tipo de	Tipo de	Número de	Tipos de	Tipo de bus	Número de
	ecuación	bus	ecuaciones	variable de	-	variables
				estado		
	$\Delta P^{(1)}$	LPQ	n_{lpq}	$ V^{(1)} $	LPQ	n_{lpq}
J_1	$\Delta Q^{(1)}$	LPQ	n_{lpq}	$\delta^{(1)}$	LPQ	n_{lpq}
	$\Delta I^{(h)}$	LPQ	$2(H-1)n_{lpq}$	$I^{(h)}$	LPQ	$2(H-1)n_{lpq}$
	$\Delta V^{(h)}$	LPQ	$2(H-1)n_{lpq}$	$V^{(h)}$	LPQ	$2(H-1)n_{lpq}$
	$\Delta I_c^{(h)}$	NLPQ	$2Hn_{nlpq}$	$ V^{(1)} $	LPQ	n_{lpq}
T	$\Delta P_c^{(h)}$	NLPQ	n_{nlpq}	$\delta^{(1)}$	LPQ	n_{lpq}
<i>J</i> 4	$\Delta P^{(1)}$	NLPQ	n_{nlpq}	$I^{(h)}$	LPQ	$2(H-1)n_{lpq}$
	$\Delta Q^{(1)}$	NLPQ	n _{nlpq}	$V^{(h)}$	LPQ	$2(H-1)n_{lpq}$
	$\Delta I^{(h)}$	NLPQ	$2(H-1)n_{nlpq}$			
	$\Delta P^{(1)}$	LPV	n_{lpv}	$ V^{(1)} $	LPQ	n_{lpq}
J_7	$\Delta V^{(h)}$	LPV	$2(H-1)n_{lpv}$	$\delta^{(1)}$	LPQ	n_{lpq}
	$\Delta I^{(h)}$	LPV	$2(H-1)n_{lpv}$	$I^{(h)}$	LPQ	$2(H-1)n_{lpq}$
				$V^{(h)}$	LPQ	$2(H-1)n_{lpq}$
	$\Delta P^{(1)}$	LPQ	n_{lpg}	α	NLPQ	n _{nlpa}
	$\Delta Q^{(1)}$	LPQ	n_{lpq}	$I^{(h)}$	NLPQ	$2(H-1)n_{nlpq}$
J_2	$\Delta I^{(h)}$	LPQ	$2(H-1)n_{lng}$	$V^{(h)}$	NLPQ	$2(H-1)n_{nlna}$
	$\Delta V^{(h)}$	LPQ	$2(H-1)n_{lpq}$	I ⁽¹⁾	NLPQ	$2n_{nlpq}$
				$V^{(1)}$	NLPQ	$2n_{nlng}$
	$\Delta I_{c}^{(h)}$	NLPQ	$2Hn_{nlpq}$	α	NLPQ	n _{nlpq}
	$\Lambda P_{1}^{(h)}$	NLPQ	n_{nlna}	$I^{(h)}$	NLPQ	$2(H-1)n_{nlna}$
J_5	$\Delta P^{(1)}$	NLPQ	n _{nlna}	$V^{(h)}$	NLPQ	$2(H-1)n_{nlna}$
	$\Delta Q^{(1)}$	NLPQ	n_{nlpq}	$I^{(1)}$	NLPQ	$2n_{nlpq}$
	$\Delta I^{(h)}$	NLPQ	$2(H-1)n_{nlna}$	V ⁽¹⁾	NLPQ	$2n_{nlng}$
	$\Delta P^{(1)}$	LPV	n _{lpv}	α	NLPQ	n_{nlpq}
	$\Delta V^{(h)}$	LPV	$2(H-1)n_{lnn}$	$I^{(h)}$	NLPQ	$2(H-1)n_{nlna}$
J_8	$\Delta I^{(h)}$	LPV	$2(H-1)n_{lnv}$	$V^{(h)}$	NLPQ	$2(H-1)n_{nlna}$
				I ⁽¹⁾	NLPQ	$2n_{nlng}$
				V ⁽¹⁾	NLPQ	$2n_{nlng}$
	$\Delta P^{(1)}$	LPQ	n _{lna}	$\delta^{(1)}$	LPV	n_{lnv}
J_3	$\Delta O^{(1)}$	LPQ	n_{lna}	$I^{(h)}$	LPV	$2(H-1)n_{lnn}$
	$\Delta I^{(h)}$	LPQ	$2(H-1)n_{lng}$	$V^{(h)}$	LPV	$2(H-1)n_{lnn}$
	$\Delta V^{(h)}$	LPQ	$2(H-1)n_{lng}$			
	$\Lambda I^{(h)}$	NLPQ	$2Hn_{nlng}$	$\delta^{(1)}$	LPV	n_{lnn}
	$\Lambda P^{(h)}$	NLPO	nning	$I^{(h)}$	LPV	$2(H-1)n_{lmn}$
J_6	ΔI_{c} $\Lambda P^{(1)}$	NLPO	nnpq	$V^{(h)}$	LPV	$2(H-1)n_{lm}$
	$\Lambda O^{(1)}$	NLPO	n_{nlma}	,		-(1 _)(p)
	$\Lambda I^{(h)}$	NLPO	$2(H-1)n_{max}$			
	$\Lambda p(1)$	LPV	<u>-(), nipq</u>	$\delta^{(1)}$	LPV	num
Ja	$\Lambda V^{(h)}$	LPV	$2(H-1)n_{max}$	$I^{(h)}$	LPV	$2(H-1)n_{m}$
	$\Lambda I^{(h)}$	LPV	$2(H-1)n_{lpv}$	$V^{(h)}$	LPV	$2(H-1)n_{1}$
		;		v		

Fig. 2.6 Diagrama de flujo del estudio de flujos de potencia armónico por el método de Newton-Raphson [6]

Como es posible observar este método es más complicado que el método de inyecciones de corriente. El método es iterativo, y el Jacobiano de este es mayor que el de flujos convencional. Mientras que en el estudio de flujos convencional el número de iteraciones para resolver un sistema esta entre 2-6 iteraciones, para el caso del problema de flujos armónicos las iteraciones son alrededor de 20, por lo que se requiere un mayor tiempo computacional para la solución del método. Un estudio de flujos convencional, ya que en este no se toman en cuenta los taps de los transformadores, ni los límites de Q entre otras consideraciones que se hacen en los estudios de flujos convencionales [6]. Además es necesario emplear técnicas de esparsidad para el Jacobiano, ya que, por ejemplo, para un estudio arriba del 15° armónico se tiene un Jacobiano con el 96% de esparsidad [11]. Este método solo puede ser aplicado a redes simétricas [8].

Se utilizó el método de inyecciones de corriente para comprobar los estimadores de estado en el sistema de 14 nodos; mismo que se encuentra en el Apéndice C de este trabajo.

CAPÍTULO 3

IDENTIFICACIÓN DE FUENTES ARMÓNICAS USANDO ESTIMACIÓN DE ESTADO

3.1 INTRODUCCIÓN

Debido al incremento de dispositivos controlados por electrónica de potencia, cargas armónicas, además del uso de sistemas de C.D. de alto voltaje, las diferentes alternativas de fuentes de energía y los sistemas con un gran porcentaje de iluminación fluorescente, se ha renovado el interés en el análisis de armónicas en los sistemas de potencia [15-17].

Según Heydt en [15] "la atención en sistemas de potencia se ha centrado en la propagación de señales para fuentes dadas, prestando poca atención al problema *inverso:* identificar la fuente de inyección armónica dando ciertas mediciones de línea y bus".

Las compañías suministradoras generalmente no conocen la ubicación de las fuentes armónicas [17], por lo que es necesario desarrollar metodologías para conocer la ubicación de estas fuentes, así como la cantidad de armónicas que introducen al sistema, como se presenta en los trabajos [6, 15-25].

Las fuentes armónicas no se pueden identificar por medio de mediciones, ya que las armónicas se distribuyen por el sistema, y se puede tener un Voltaje armónico en algún nodo o un porcentaje de Distorsión Armónica Total (THD) [28].

Para poder realizar la estimación de estado armónica, es necesario tener las siguientes mediciones [16]:

- Ángulos de fase
- Mediciones trifásicas
- Formas de onda de voltaje y corriente

Los métodos más comunes para la identificación de fuentes armónicas son el de cuadrados mínimos [6, 15-18], filtros de Kalman [6, 20-22, 24], redes neuronales [6, 23], o despejando la fórmula empleada para la solución de flujos armónicos por el método de inyecciones de corriente [19]. Los métodos que se usarán en este trabajo son el de cuadrados mínimos de Heydt [15], y el método de despeje de Nguyen [19], mismos que se explicarán más adelante.

Los filtros de Kalman son una extensión del método de cuadrados mínimos, se ocupan para estimación dinámica como se menciona en [6, 20-22, 24-25]. Este método es muy eficiente debido a la naturaleza dinámica de las inyecciones armónicas, además no requiere tantas mediciones como en los demás métodos [20]. En [21] la metodología del estimador es usar mediciones de potencias activas y reactivas para estimar los voltajes armónicos en los buses. El modelo dado en [22] incluye la matriz de admitancias del sistema, la técnica propuesta es dependiente de la frecuencia, por ello es necesario conocer la frecuencia fundamental. [20] propone un modelo independiente de la frecuencia. El problema encontrado a esta metodología es que la ganancia puede ser insensible a la escala de la matriz de covarianza [25].

Los estimadores de estado armónicos tiene diversas aplicaciones, como dar información de la generación y penetración armónica en la red [15], y ayuda a cumplir los estándares armónicos [17].

3.2 MÉTODO DE CUADRADOS MÍNIMOS [27]

Si Y es una variable aleatoria que fluctúa alrededor de un parámetro desconocido η ; esto es $Y = \eta + \varepsilon$, donde ε es el error. Si el modelo es lineal, se asume que η puede expresarse de forma

$$\eta = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1},$$

Donde las variables $x_1, x_2, ..., x_{p-1}$ son constantes conocidas, y β_j (j = 0, 1, ..., p - 1) son parámetros desconocidos a estimar. Si las x_j son variadas y n valores de Y son observadas, entonces

$$Y_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_{p-1} x_{i,p-1} + \varepsilon_i, \quad (i = 1, 2, \dots, n)$$
(3.1)

Escribiendo estas ecuaciones en forma matricial se tiene

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} x_{10} & x_{11} & x_{12} & \cdots & x_{1,p-1} \\ x_{20} & x_{21} & x_{22} & \cdots & x_{2,p-1} \\ \vdots & \vdots & \vdots & & \vdots \\ x_{n0} & x_{n1} & x_{n2} & \cdots & x_{n,p-1} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

0

$$Y = X\beta + \varepsilon \tag{3.2}$$

Donde X se conoce como matriz de regresión.

Para estimar β por el método de cuadrados mínimos se debe minimizar $\sum_i \varepsilon_i^2$ con respecto a β ; es decir, ajustando $\theta = X\beta$, se minimiza $\varepsilon'\varepsilon = ||Y - \theta||^2$ sujeto a $\theta \in C(X) = \Omega$, donde Ω es la columna espacio de $X(=\{y: y = Xx \text{ para cualquier } x\})$. Si se deja θ variar en Ω , $||Y - \theta||^2$ será mínimo para $\theta = \hat{\theta}$ cuando $(Y - \hat{\theta}) \perp \Omega$ (fig 3.1).

Por lo tanto $\hat{\theta}$ es la única proyección ortogonal de *Y* sobre Ω .

$$X'\hat{\theta} = X'Y \tag{3.3}$$

Se supone que las columnas de *X* son linealmente independientes por lo que existe un vector unitario $\hat{\beta}$ tal que $\hat{\theta} = X\hat{\beta}$. Entonces sustituyendo en (3.3) se tiene

$$X'X\hat{\beta} = X'Y \tag{3.4}$$

Por lo tanto $\hat{\beta}$ se puede resolver

$$\hat{\beta} = (X'X)^{-1}X'Y \tag{3.5}$$

Fig. 3.1 El método de cuadrados mínimos consiste en encontrar A tal que AB es un mínimo.

3.3 Método de Cuadrados Mínimos para la Identificación de Fuentes Armónicas

En este trabajo se abordan dos de los métodos usados para localizar fuentes armónicas en sistemas de potencia empleando algoritmos de estimación de estado, los cuales se conocerán como, *estimadores de armónicas o estimadores de estado armónico*; uno propuesto por Heydt en [15], y la otra metodología propuesta en [19] por Nguyen.

Ambos métodos parten de la ecuación empleada para resolver el problema de flujos armónicos usando la técnica de inyecciones de corrientes [15, 19]:

$$I_h = Y_h V_h \tag{3.6}$$

Donde:

 I_h y V_h son la corriente y voltaje nodal de la armónica h.

 Y_h es la matriz Ybus para la armónica h.

A continuación se explican con más detalle ambos métodos.

3.3.1 ESTIMADOR DE ESTADO ARMÓNICO PROPUESTO POR HEYDT EN [15]

Se tiene el sistema mostrado en la figura 3.1, del cual se desconoce la ubicación de la fuente armónica, y se tienen mediciones de voltajes y corrientes armónicas en los nodos 1, 2 y 3, entonces la ecuación (3.6) queda de la forma.

Fig. 3.2 Sistema de cuatro nodos

Si se reacomoda (3.7) agrupando los datos conocidos y los desconocidos se tiene [15]:

$$\begin{bmatrix} I_i \\ \bar{I}_j \end{bmatrix}_h = \begin{bmatrix} G & H \\ J & K \end{bmatrix}_h \begin{bmatrix} V_i \\ \bar{V}_j \end{bmatrix}_h$$
(3.8)

De acuerdo al ejemplo la ecuación (3.8) se puede reescribir como:

$$\begin{bmatrix} I_4\\ \bar{I}_1\\ \bar{I}_2\\ \bar{I}_3 \end{bmatrix}_h = \begin{bmatrix} Y_{44} & Y_{41} & Y_{42} & Y_{43}\\ Y_{14} & Y_{11} & Y_{12} & Y_{13}\\ Y_{24} & Y_{21} & Y_{22} & Y_{23}\\ Y_{34} & Y_{31} & Y_{32} & Y_{33} \end{bmatrix}_h \begin{bmatrix} V_4\\ \bar{V}_1\\ \bar{V}_2\\ \bar{V}_3 \end{bmatrix}_h$$

Resolviendo la ecuación:

$$[I_i]_h = [G]_h [V_i]_h + [H]_h [\bar{V}_j]_h$$
(3.9)

$$[\bar{I}_j]_h = [J]_h [V_i]_h + [K]_h [\bar{V}_j]_h$$
(3.10)

Donde:

 $[\bar{I}_i]_h$, $[\bar{V}_i]_h$ Son vectores que contienen las corrientes y voltajes armónicos medidos en el nodo *i*.

 $[I_j]_h, [V_j]_h$ Son vectores de corrientes y voltajes nodales armónicos desconocidos del nodo *j*.

 $[G]_h, [H]_h, [J]_h, [K]_h$ Son sub-matrices que se obtienen al reacomodar la matriz Y_h .

Y "[–]" significa que el dato es conocido o medido

Despejando $[V_j]_h$ de la ecuación (3.10)

$$[J]_{h}[V_{j}]_{h} = [\bar{I}_{i}]_{h} - [K]_{h}[\bar{V}_{i}]_{h}$$

Debido a que $[J]_h$ no es una matriz cuadrada, se emplea la pseudoinversa para poder despejar $[V_j]_h$.

$$[V_j]_h = [J^+]_h [\bar{I}_i]_h - [J^+]_h [K]_h [\bar{V}_i]_h$$
(3.11)

Donde:

 $[J^+]_h = [[J^T]_h [J]_h]^{-1} [J^T]_h$, es la pseudoinversa de $[J]_h$. $[J^T]_h$ es la transpuesta de $[J]_h$. Sustituyendo (3.11) en (3.9):

$$[I_{j}]_{h} = [G]_{h} \{[J^{+}]_{h}[\bar{I}_{i}]_{h} - [J^{+}]_{h}[K]_{h}[\bar{V}_{i}]_{h}\} + [H]_{h}[\bar{V}_{i}]_{h}$$
$$[I_{j}]_{h} = [G]_{h}[J^{+}]_{h}[\bar{I}_{i}]_{h} - [G]_{h}[J^{+}]_{h}[K]_{h}[\bar{V}_{i}]_{h} + [H]_{h}[\bar{V}_{i}]_{h}$$

Agrupando los términos de la ecuación anterior:

$$[I_j]_h = [G]_h [J^+]_h [\bar{I}_i]_h - \{[G]_h [J^+]_h [K]_h + [H]_h\} [\bar{V}_i]_h$$
(3.12)

O bien reescribiendo la ecuación (3.12) con el ejemplo mostrado en la figura 3.2

$$\begin{split} [I_4]_h &= [Y_{44}]_h \begin{bmatrix} Y_{14} \\ Y_{24} \\ Y_{34} \end{bmatrix}_h^+ \begin{bmatrix} \bar{I}_1 \\ \bar{I}_2 \\ \bar{I}_3 \end{bmatrix}_h \\ &- \left\{ \begin{bmatrix} Y_{44} \end{bmatrix}_h \begin{bmatrix} Y_{14} \\ Y_{24} \\ Y_{34} \end{bmatrix}_h^+ \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33} \end{bmatrix}_h + \begin{bmatrix} Y_{41} & Y_{42} & Y_{43} \end{bmatrix}_h \right\} \begin{bmatrix} \bar{V}_1 \\ \bar{V}_2 \\ \bar{V}_3 \end{bmatrix}_h \end{split}$$

La ecuación (3.12) es la reportada por Heydt en [15]. La figura 3.3 muestra el diagrama de flujo de este método.

La metodología para la identificación de fuentes armónicas por el método propuesto por Heydt en [15] consta en los siguientes pasos:

1.- Se obtienen los datos del sistema y las mediciones de voltajes y corrientes armónicas nodales para cada armónica h del sistema.

2.- Se calcula la matriz de admitancias nodales Y_h para cada armónica h del sistema.

3.- Se reacomoda la matriz de admitancias nodales Y_h , para obtener las submatrices G, H, J, K para cada armónica h.

Fig. 3.3 Diagrama de flujo del Estimador de estado armónico propuesto por Heydt

4.- Se calcula la pseudoinversa de J.

5.- Se resuelve la ecuación (3.12) para cada armónica en el sistema.

6.- Se resuelve la ecuación (3.6) para obtener los voltajes armónicos nodales de la red.

Debido a que este método proviene del estudio de flujos por inyección de corrientes armónicas, las mediciones de corrientes armónicas nodales donde no este conectada una fuente armónica, o se sospeche que no haya alguna, serán consideradas igual a cero.

El proceso no es iterativo, por lo que el resultado se obtiene en forma directa para cada armónica medida en el sistema. Las mediciones de corrientes y voltajes armónicas nodales deben ser del mismo nodo.

Este método sólo calcula las corrientes armónicas nodales desconocidas, por lo que es necesario usar la ecuación (3.6) para conocer los voltajes armónicos que se desconocen.

3.3.2 ESTIMADOR DE ESTADO ARMÓNICO PROPUESTO POR NGUYEN EN [19]

El método propuesto por Nguyen en [19] también parte de la ecuación (3.6), y se emplean despejes para llegar a la ecuación final. Al igual que en el método propuesto por Heydt en [15], se usa la pseudoinversa para la estimación, y la diferencia entre estos métodos es que la metodología puede tener diferentes conjuntos de mediciones. Para facilitar el entendimiento del método se retoma la figura 3.2, en la cual se conocen las siguientes mediciones: \bar{V}_1 , \bar{I}_1 , \bar{V}_2 e \bar{I}_3 : mientras que se desconoce: I_2 , V_3 , V_4 e I_4 .

Acomodando los conjuntos con la ecuación (3.6) [19].

$$\begin{bmatrix} Y_{11} & Y_{12} & Y_{13} & Y_{14} \\ Y_{21} & Y_{22} & Y_{23} & Y_{24} \\ Y_{31} & Y_{32} & Y_{33} & Y_{34} \\ Y_{41} & Y_{42} & Y_{43} & Y_{44} \end{bmatrix}_{h} \begin{bmatrix} \overline{V}_{1} \\ \overline{V}_{2} \\ V_{3} \\ V_{4} \end{bmatrix}_{h} = \begin{bmatrix} \overline{I}_{1} \\ \overline{I}_{2} \\ \overline{I}_{3} \\ I_{4} \end{bmatrix}_{h}$$
(3.13)

O también:

$$\begin{split} Y_{11}\bar{V}_1 + Y_{12}\bar{V}_2 + Y_{13}V_3 + Y_{14}V_4 &= \bar{I}_1 \\ Y_{21}\bar{V}_1 + Y_{22}\bar{V}_2 + Y_{23}V_3 + Y_{24}V_4 &= I_2 \\ Y_{31}\bar{V}_1 + Y_{32}\bar{V}_2 + Y_{33}V_3 + Y_{34}V_4 &= \bar{I}_3 \\ Y_{41}\bar{V}_1 + Y_{42}\bar{V}_2 + Y_{43}V_3 + Y_{44}V_4 &= I_4 \end{split}$$

Despejando las mediciones de los datos desconocidos

$$Y_{13}V_{3} + Y_{14}V_{4} = -Y_{11}\bar{V}_{1} - Y_{12}\bar{V}_{2} + \bar{I}_{1}$$

$$Y_{23}V_{3} + Y_{24}V_{4} - I_{2} = -Y_{21}\bar{V}_{1} - Y_{22}\bar{V}_{2}$$

$$Y_{33}V_{3} + Y_{34}V_{4} = -Y_{31}\bar{V}_{1} - Y_{32}\bar{V}_{2} + \bar{I}_{3}$$

$$Y_{43}V_{3} + Y_{44}V_{4} - I_{4} = -Y_{41}\bar{V}_{1} - Y_{42}\bar{V}_{2}$$
(3.14)

Agrupando (3.14) en forma matricial:

$$\begin{bmatrix} 0 & 0 & Y_{13} & Y_{14} \\ -1 & 0 & Y_{23} & Y_{24} \\ 0 & 0 & Y_{33} & Y_{34} \\ 0 & -1 & Y_{43} & Y_{44} \end{bmatrix}_{h} \begin{bmatrix} I_2 \\ I_4 \\ V_3 \\ V_4 \end{bmatrix}_{h} = \begin{bmatrix} -Y_{11}\bar{V}_1 - Y_{12}\bar{V}_2 + \bar{I}_1 \\ -Y_{12}\bar{V}_1 - Y_{22}\bar{V}_2 \\ -Y_{31}\bar{V}_1 - Y_{32}\bar{V}_2 + \bar{I}_3 \\ -Y_{41}\bar{V}_1 - Y_{42}\bar{V}_2 \end{bmatrix}_{h}$$
(3.15)

O bien

$$Z(h) = H(h)X(h) \tag{3.16}$$

Donde:

La matriz de mediciones
$$H(h) = \begin{bmatrix} 0 & 0 & Y_{13} & Y_{14} \\ -1 & 0 & Y_{23} & Y_{24} \\ 0 & 0 & Y_{33} & Y_{34} \\ 0 & -1 & Y_{43} & Y_{44} \end{bmatrix}_h$$

El vector de mediciones $Z(h) = \begin{bmatrix} -Y_{11}\bar{V}_1 - Y_{12}\bar{V}_2 + \bar{I}_1 \\ -Y_{12}\bar{V}_1 - Y_{22}\bar{V}_2 \\ -Y_{31}\bar{V}_1 - Y_{32}\bar{V}_2 + \bar{I}_3 \\ -Y_{41}\bar{V}_1 - Y_{42}\bar{V}_2 \end{bmatrix}_h$

La ecuaciones (3.15) y (3.16) son las reportadas por Nguyen en [19], y la figura 3.4 muestra el diagrama de flujo del método.

La metodología para identificar las fuentes armónicas por el método de Nguyen [19] se resume con los siguientes pasos:

1.- Se obtienen los datos del sistema y las mediciones de voltajes y corrientes armónicas nodales para cada armónica h del sistema.

Figura 3.4 Diagrama de flujo del Estimador de Estado Armónico propuesto por Nguyen

2.- Se calcula la matriz de admitancias nodales Y_h para cada armónica h del sistema.

3.- Se obtiene la matriz Z_h , X_h y H_h para cada armónica h del sistema.

4.- Se resuelve la ecuación (3.16) para cada armónica h del sistema.

Una de las mayores diferencias entre los métodos abordados es que el propuesto por Heydt en [15] las mediciones de voltajes y corrientes armónicas deben ser hechas en el mismo nodo, mientras que en el de Nguyen [19] se pueden tener mediciones de voltajes y corriente armónicas en el mismo nodo o solo la medición de voltaje o corriente armónica. De igual forma que en el método propuesto en [15] por Heydt, el procedimiento no es iterativo, por ello el resultado se obtiene en forma directa para cada armónica medida del sistema. A diferencia del método de Heydt que solo calcula las corrientes armónicas desconocidas, en este método se obtienen las corrientes y voltajes armónicos desconocidos.

Como se mencionó este método también proviene del método de inyecciones de corrientes armónicas, por ello las mediciones de corrientes armónicas nodales donde no se tenga una fuente armónica, o se sospeche que no haya alguna, serán igualadas a cero.

CAPÍTULO 4

RESULTADOS DE APLICACIÓN Y DESCRIPCIÓN DE PRUEBAS

4.1 INTRODUCCIÓN

Este Capítulo contiene los resultados obtenidos al aplicar los métodos de estimación de estado armónico descritos en el Capítulo 3.

Para verificar la veracidad de los resultados se desarrolló un programa en FORTRAN 90 para el cálculo de flujos armónicos empleando el método de inyecciones de corriente [1]; comprobando los resultados con el libro de Acha y Madrigal [4].

Los sistemas de prueba empleados son el de 5 y 14 nodos dados en [4, 12-14].

Los datos de los sistemas de prueba se encuentran en las referencias citadas, y en el Apéndice A de este trabajo.

Debido a que los sistemas de prueba solo tienen una fuente de armónicas conectada a la red, se emplean los datos dados en [28, 32] para añadir más fuentes de armónicas y hacer pruebas.

4.2 ESTIMACIÓN DE UN SISTEMA DE 5 NODOS CON UNA FUENTE DE Armónicas

De acuerdo a los resultados mostrados por Acha y Madrigal en [4], los voltajes armónicos obtenidos con el método de inyecciones de corriente para el sistema de prueba de 5 nodos se encuentran en la tabla 4.1; mientras que los datos de la fuente armónica que para este caso es un Compensador Estático de Vars se enlistan en la tabla 4.2. La figura 4.1 muestra el sistema de prueba.

V/h	5	7	11	13	17	19	23	25	THD%
$ V ^1$	0.0007	0.00005	0.0	0.0	0.0	0.0	0.0	0.0	0.00009
θ^1	108.12	58.543	-4.728	-16.52	-40.39	-66.91	162.95	142.81	
$ V ^2$	0.0057	0.003	0.0015	0.0016	0.002	0.0026	0.0022	0.0012	0.008
θ^2	137.75	118.91	147.36	148.11	137.44	120.68	39.513	19.029	
$ V ^{3}$	0.1675	0.1235	0.0304	0.0188	0.0126	0.0134	0.0098	0.0056	0.2122
θ^3	99.919	50.809	-11.68	-22.73	-42.19	-61.16	-146.1	-169.1	
$ V ^4$	0.2107	0.154	0.036	0.0213	0.0123	0.0116	0.006	0.0026	0.265
θ^4	103.58	55.324	-6.193	-16.89	-35.55	-53.89	-136.2	-156.2	
$ V ^{5}$	0.5213	0.3302	0.2307	0.2217	0.2621	0.3293	0.2795	0.1512	0.8725
θ^5	148.76	145.76	150.37	148.3	136.65	119.83	38.673	18.173	

Tabla 4.1. Voltajes armónicos del sistema de 5 nodos [4]

Tabla 4.2. Corriente Armónica de la Fuente de Armónicas (Compensador Estático de Vars) [4]

Armónica	% de la corriente fundamental	Armónica	% de la corriente fundamental
5	5.05	17	0.44
7	2.59	19	0.35
11	1.05	23	0.24
13	0.75	25	0.22

4.2.1 ESTIMACIÓN DE UN SISTEMA DE 5 NODOS CON UNA FUENTE DE Armónicas Sin Error En Mediciones Por El Método De Heydt[15]

Para realizar la identificación de la fuente armónica por el método dado por Heydt en [15]. La tabla 4.3 tiene las mediciones sin error usadas para llevar a cabo la estimación.

mediciones para el sistema de 5 nodos										
Medición \h	5	7	11	13	17	19	23	25		
$ \mathbf{V} ^2$	0.0057	0.00296	0.00153	0.001586	0.002009	0.002573	0.00215	0.00122		
Θ^2	137.756	118.915	147.369	148.1139	137.4432	120.6839	39.513	19.0293		
$ \mathbf{V} ^3$	0.16404	0.121	0.02973	0.018437	0.012373	0.013101	0.00924	0.00547		
Θ^3	99.9193	50.8093	-11.688	-22.7312	-42.1913	-61.1692	-146.11	-169.17		
$ \mathbf{V} ^4$	0.20602	0.15059	0.03514	0.020785	0.012009	0.011373	0.00567	0.00253		
Θ^4	103.588	55.3242	-6.1935	-16.8994	-35.5594	-53.8979	-136.22	-156.22		
$ \mathbf{I} ^2$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
α^2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
$ \mathbf{I} ^3$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
α^3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
$ \mathbf{I} ^4$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
α^4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

Tabla 4.3 Mediciones para la estimación por el método de Heydt [15], sin error en las mediciones para el sistema de 5 nodos

Las corrientes armónicas estimadas sin error en las mediciones se muestran en la tabla 4.4. Como se observa en esta tabla, la corriente del nodo 1 es muy alta, por lo que es difícil identificar en que nodo se encuentra la fuente armónica; ya que como el método propuesto por Heydt en [15], está basado en el método de inyecciones de corrientes de Mahmoud [1], las corrientes de los nodos donde no se encuentre una fuente armónica deben ser iguales a cero.

La tabla 4.5 se comparan los resultados de la fuente armónica dada en [4] contra los estimados. Como se ve en esta tabla, las corrientes estimadas son exactas comparadas contra los datos dados en [4].

En la tabla 4.6 se comparan los voltajes armónicos obtenidos por el estimador. Se observa que para el voltaje del nodo 1 no coinciden los voltajes, esto es debido a que las corrientes armónicas estimadas en este nodo son muy altas.

	L		
Arm.	Nodo	Mag. de Corriente	Ang. de la Corriente
	1	<i>AAA</i> 99	-136 1141
5	5	1.17515	83.30746
7	1	.31251	-158.0564
	5	.60267	83.30690
11	1	.22963	-125.8032
	5	.24418	83.30348
13	1	.01177	56.54605
	5	.17457	83.30370
17	1	.00091	-157.0494
	5	.10241	83.30377
19	1	.00683	-149.2284
	5	.08146	83.30363
23	1	.05354	131.62010
	5	.05580	83.30570
25	1	1.16860	-76.77283
	5	.04431	83.56160

Tabla 4.4. Corrientes armónicas estimadas, sin error en las mediciones, por el método de Heydt [15] para el sistema de 5 nodos

Tabla 4.5 Comparación de la corriente del Compensador Estático de Vars contra los estimados, sin error en las mediciones, por el método de Heydt [15] para el sistema de 5 nodos

5 10005									
Armónica	Mag. de	Mag. de	Error	Ang. de Ang. de	Error del				
	Corrient	Corrient	de la	Corrient Corrient	Ang.				
	estimada	<i>real</i> [4]	mag.	estimada real [4]					
5	1.17515	1.1756	.00045	83.30746 83.3037	.00046				
7	.60267	.602952	.000282	83.30690 83.3037	.001				
11	.24418	.24444	.00026	83.30348 83.3037	.00022				
13	.17457	.1746	.00003	83.30370 83.3037	0				
17	.10241	.102432	.000022	83.30377 83.3037	.00007				
19	.08146	.08148	.00002	83.30367 83.3037	.00003				
23	.05580	.055872	.000072	83.30570 83.3037	.002				
25	.04431	.04656	.00225	83.56160 83.3037	.2579				

La tabla 4.7 muestra la Distorsión Armónica Total (THD) del voltaje en cada nodo de la red. Según el Estándar 519-1992 [28] el valor más alto de THD es de 1.5% para el caso de sistemas de transmisión. En la tabla el THD no sobrepasa el valor dado por el Estándar, aunque los resultados obtenidos, tanto de voltajes como corrientes armónicas, no son confiables para este caso por lo explicado.

	Nod	Mag.	Mag.	Error	Ang. volt	Ang.	Error
Arm		Volt.	Volt.	de la	estim.	Volt.	del ang.
		estim.	flujos	Mag.		Flujos	
			[4]			[4]	
	1	.000157	.00007	.00164	-34.0557	108.122	142.18
	2	.00570	.0057	0	137.769	137.756	.013
5	3	.16393	.16404	.00011	99.9287	99.9193	.0094
	4	.20591	.20602	.00011	103.6013	103.588	.0133
	5	.51709	.51721	.00012	148.7711	148.764	.0071
	1	.00019	.00005	.00014	-55.4297	58.5431	-113.97
	2	.00292	.00296	.00004	118.942	118.915	.027
7	3	.120918	.121	.000082	50.82581	50.8093	.01651
	4	.1505	.15059	.0004	55.34944	55.3242	.02524
	5	.32758	.32764	.00006	145.7735	145.768	.0055
	1	.00026	.00001	.00025	-34.672	-4.7287	-39.402
	2	.00153	.00153	0	147.377	147.369	.008
11	3	.02971	.02973	.00002	-11.704	-11.688	.016
	4	.03508	.03514	.00006	-6.18279	-6.1935	.01071
	5	.22872	.22891	.00019	150.3737	150.374	.0003
	1	.00001	.000005	.000005	138.455	-16.527	154.982
	2	.00159	.001586	.000004	148.1138	148.1139	.00001
13	3	.01844	.018437	.000003	-22.7301	-22.7312	.0011
	4	.02079	.020785	.00015	-16.8999	-16.8994	.0005
_	5	.21996	.219951	.000009	148.3048	148.305	.0002
	1	.00000	.000002	.000002	-52.707	-40.3931	11.7679
	2	.00201	.002009	.000001	137.4436	137.4432	.0004
17	3	.01237	.012373	.00003	-42.1916	-42.1913	.0003
	4	.01201	.012009	.000001	-35.5592	-35.5594	.0002
	5	.26009	.260092	.000002	136.6536	136.6535	.00011
	1	.00000	.000001	.000001	-59.8694	-66.9141	7.0447
	2	.00257	.002573	.000003	120.6838	120.6839	.0001
19	3	.0131	.013101	.000001	-61.1698	-61.1692	.0006
	4	.01137	.011373	.000003	-53.898	-53.8979	.0001
	5	.32678	.326777	.000027	119.8391	119.8392	.0001
	1	.00001	0	.00001	-138.56	162.952	-301.51
	2	.00215	.00215	0	39.5129	39.513	.0001
23	3	.00925	.00924	.00001	-146.11	-146.11	0
	4	.00566	.00567	.00001	-136.217	-136.22	.003
	5	.2659	.26618	.00028	38.6754	38.6734	.002
	1	.002926	0	.002926	13.2303	142.82	129.59
	2	.00122	.00122	0	19.03235	19.0293	.00305
25	3	.0046	.00547	0.00087	-167.87	-169.17	.7
	4	.00252	.00253	.00001	-156.791	-156.22	.571
	5	.14281	.15003	.00722	18.42939	18.1738	.25559

Tabla 4.6. Comparación de los voltajes armónicos contra los estimados, sin error en las mediciones, por el método de Heydt [15] para el sistema de 14 nodos

isj par	u ei si	isiema ae	5 1100
	Nod	%THD	
	1	.00281	
	2	.007929	
	3	.212051	

.264821

.86753

4

5

Tabla 4.7. THD de los voltajes, sin error en las mediciones, por el método de Heydt[15] para el sistema de 5 nodos

4.2.2 ESTIMACIÓN DE UN SISTEMA DE 5 NODOS CON UNA FUENTE DE Armónicas Sin Error En Mediciones Por El Método De Nguyen[19]

La tabla 4.8 muestra las mediciones que se emplearon para llevar a cabo la estimación de armónicas por el método de Nguyen dado en [19].

Medición \h	5	7	11	13	17	19	23	25
$ \mathbf{V} ^1$	0.00007	0.00005	0.00001	0.000005	0.000002	0.000002	0.0	0.0
Θ^1	108.122	58.5431	-4.7287	-16.527	-40.3931	-66.9141	0.0	0.0
$ \mathbf{V} ^2$	0.0057	0.00296	0.00153	0.001586	0.002009	0.002573	0.00215	0.00122
Θ^2	137.756	118.915	147.369	148.1139	137.4432	120.6839	39.513	19.0293
$ \mathbf{V} ^3$	0.16404	0.121	0.02973	0.018437	0.012373	0.013101	0.00924	0.00547
Θ^3	99.9193	50.8093	-11.688	-22.7312	-42.1913	-61.1692	-146.11	-169.17
$ \mathbf{I} ^2$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ \mathbf{I} ^4$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Tabla 4.8 Mediciones para la estimación por el método de Nguyen [19], sin error en las mediciones para el sistema de 5 nodos

En la tabla 4.9 se tienen las corrientes armónicas estimadas por el método de Nguyen [19]. Para este caso el estimador indica que la fuente armónica se encuentra en el nodo 5, y esto es correcto, ya que los nodos donde no se encuentra conectada la fuente armónica son valores menores a los de la corriente armónica en el nodo 5; además en algunos casos la corriente armónica se vuelve cero, caso contrario que en el caso resuelto por el método de Heydt [15].

Arm	Nodo	Mag. de	Ang. de
		Corriente	Corrient
	1	.01154	-161.914
5	3	.00043	39.72454
	5	1.17423	83.32327
	1	.00330	148.3904
7	3	.00035	16.30106
	5	.60213	83.34638
	1	.00003	77.48232
11	3	.00087	2.86331
	5	.24375	83.25249
	1	.00006	73.54201
13	3	.00003	96.49910
	5	.17461	83.30501
17	1	.00011	-130.39
	3	.00000	-165.992
	5	.10241	83.3040
	1	.00010	23.1125
19	3	.00000	-142.852
	5	.08146	83.3036
	1	.00020	-106.320
23	3	.00002	134.179
	5	.05575	83.3039
	1	.00012	171.100
25	3	.00069	-68.1774
	5	.04612	83.3180

 Tabla 4.9 Corrientes armónicas estimadas, sin error en las mediciones, por el método

 de Nguyen [19] para el sistema de 5 nodos

La tabla 4.10 enlista el error que se tiene al comparar la corriente armónica real de la fuente dada por Acha y Madrigal en [4] contra la obtenida por el estimador. Como se observa en esta tabla las corrientes armónicas son exactas.

La tabla 4.11 muestra los voltajes armónicos contra los dados en [4] por Madrigal y Acha, los voltajes que están marcados de color gris fueron estimados por este método, mientras que los otros se obtuvieron con las corrientes estimadas empleando la expresión 3.8. A diferencia del estimador armónico propuesto por Heydt[15], los voltajes armónicos nodales de la tabla 4.11 son exactos. Para el caso del ángulo de los voltajes de las armónicas 23 y 25 en el nodo 1, se nota un error mayor, pero la magnitud del voltaje es cero, por lo que se omiten los resultados de los ángulos.

		u				
Arm	Mag. de Corriente estimada	Mag. de Corriente real [4]	Error de la mag	Ang. de Corriente estimada	Ang. de corriente real [4]	Error del Ang
5	1.17423	1.1756	.00137	83.32327	83.3037	.01957
7	.60213	.602952	.000822	83.34638	83.3037	.04268
11	.24375	.24444	.00069	83.25249	83.3037	.05121
13	.17461	.1746	.00001	83.30501	83.3037	.00131
17	.10241	.102432	.000022	83.30409	83.3037	.00039
19	.08146	.08148	.00002	83.30367	83.3037	.00003
23	.05575	.055872	.000122	83.30394	83.3037	.00024
25	.04612	.04656	.00044	83.31804	83.3037	.01434

Tabla 4.10 Comparación de la corriente del Compensador Estático de Vars contra los estimados, sin error en las mediciones, por el método de Nguyen [19] para el sistema de 5 nodos

Por último, la tabla 4.12 enlista el THD de voltaje para cada nodo del sistema. De antemano se conoce que la fuente armónica se encuentra en el nodo 5, pero es necesario saber si esta fuente introduce una mayor cantidad de armónicas que las permitidas según es Estándar 519-1992[28], lo que no ocurre para este caso. Se nota que el THD del nodo 1 para el caso de Heyd[15] y Nguyen [19] tablas 4.7 y 4.12 tienen valores distintos, esto es debido a que el método de Heydt estimó corrientes armónicas muy altas para este nodo, mismas que afectaron el cálculo de voltajes armónicos y THD, mientras que el método de Nguyen para este caso fue exacto.

4.2.3 ESTIMACIÓN DE UN SISTEMA DE 5 NODOS CON UNA FUENTE DE Armónicas Con Error En Mediciones Por El Método De Nguyen[19]

Debido a que la identificación de la fuente de armónica por el método de Nguyen dio mejores resultados, el siguiente paso es afectar las mediciones de voltaje y corriente armónicas con un error de $\pm 5\%$, según lo mencionado en los Estándar IEEE 519-1992 en [28]. El error de las mediciones se represento por medio de números aleatorios con una distribución uniforme y con limites de $\pm 5\%$; y se enlistan en la tabla 4.13.

Arm	Nod	Mag.	Mag.	Error	Ang. volt	Ang.	Error
		Volt.	Volt.	de la	estim.	Volt.	del ang.
		estim.	flujos	Mag.		Flujos	
			[4]			[4]	
	1	.00007	.00007	0	108.122	108.122	0
_	2	.00570	.0057	0	137.756	137.756	0
5	3	.16404	.16404	0	99.9193	99.9193	0
	4	.20596	.20602	.00006	103.5813	103.588	.0067
	5	.51669	.51721	.00052	148.7773	148.764	.0133
	1	.00005	.00005	0	58.54309	58.5431	.00001
_	2	.00296	.00296	0	118.915	118.915	0
7	3	.12100	.121	0	50.80931	50.8093	.00001
	4	.15054	.15059	.00005	55.30325	55.3242	.02095
	5	.32720	.32764	.00044	145.8066	145.768	.0386
	1	.00001	.00001	0	-4.7287	-4.7287	0
	2	.00153	.00153	0	147.369	147.369	0
11	3	.02973	.02973	0	-11.688	-11.688	0
	4	.03517	.03514	.00003	-6.65793	-6.1935	.46443
	5	.22826	.22891	.00065	150.3465	150.374	.0275
	1	.00001	.000005	.000005	-16.527	-16.527	0
	2	.00159	.001586	.000004	148.1139	148.1139	0
13	3	.01844	.018437	.000003	-22.7313	-22.7312	.0001
	4	.02080	.020785	.00015	-16.8868	-16.8994	.0126
	5	.22000	.219951	.000049	148.3057	148.305	.0007
	1	.00000	.000002	.000002	-40.3936	-40.3931	.00053
	2	.00201	.002009	.000001	137.4436	137.4432	.0004
17	3	.01237	.012373	.00003	-42.1913	-42.1913	.00001
	4	.01201	.012009	.000001	-35.5588	-35.5594	.00052
	5	.26009	.260092	.000002	136.6539	136.6535	.0004
	1	.00000	.000001	.000001	-66.9142	-66.9141	.00011
	2	.00257	.002573	.000003	120.6838	120.6839	.0001
19	3	.0131	.013101	.000001	-61.1692	-61.1692	0
	4	.01137	.011373	.000003	-53.898	-53.8979	.00011
	5	.32675	.326777	.000027	119.8391	119.8392	.0001
	1	.00000	0	0	74.61845	162.952	
•••	2	.00215	.00215	0	39.5131	39.513	.0001
23	3	.00924	.00924	0	-146.11	-146.11	0
	4	.00566	.00567	.00001	-136.221	-136.22	.0017
	5	.26564	.26618	.00054	38.6731	38.6734	.0003
	1	.00000	0	0	164.7571	142.82	
~ -	2	.00122	.00122	0	19.02921	19.0293	.00009
25	3	.00457	.00547	0.0009	-169.17	-169.17	0
	4	.00267	.00253	.00014	-156.809	-156.22	.5894
	5	.14871	.15003	.00132	18.19943	18.1738	.02563

Tabla 4.11 Comparación de los voltajes armónicos contra los estimados, sin error enlas mediciones, por el método de Nguyen [19] para el sistema de 5 nodos

Tabla 4.12 THD	de los voltajes,	sin error en	ı las mediciones,	por el método de
	Nguyen[19] <u> </u>	oara el siste	<u>m</u> a de 5 nodos	

Nod	%THD
1	.000083
2	.007929
3	.212186
4	.264899
5	.867939

Tabla 4.13 Mediciones para la estimación por el método de Nguyen [19], con error en las mediciones para el sistema de 5 nodos

Medición \h	5	7	11	13	17	19	23	25
$ \mathbf{V} ^1$	0.00007	0.00005	0.00001	0.000005	0.000002	0.000002	0.0	0.0
Θ^1	108.122	58.5431	-4.7287	-16.527	-40.3931	-66.9141	0.0	0.0
$ \mathbf{V} ^2$	0.00594	0.00282	0.00155	0.00165	0.00195	0.00248	0.00205	0.00117
Θ^2	137.756	118.915	147.369	148.1139	137.4432	120.6839	39.513	19.0293
$ \mathbf{V} ^3$	0.16238	0.12475	0.03043	0.01833	0.01226	0.01245	0.00943	0.0045
Θ^3	99.9193	50.8093	-11.688	-22.7312	-42.1913	-61.1692	-146.11	-169.17
$ \mathbf{I} ^2$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ \mathbf{I} ^4$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Los resultados de las corrientes armónicas estimadas están en la tabla 4.14. Se nota como el error ha afectado estos resultados, y es difícil decir en donde se encuentra la fuente armónica, debido a que las corrientes armónicas estimadas en el nodo 3 son muy altas, lo cual hace que se sospeche que hay una fuente armónica conectada en este nodo.

En la tabla 4.15 se comprueban los resultados estimados de la corriente armónica inyectada por la fuente armónica contra los dados por Madrigal y Acha en [4]. Las corrientes armónicas calculadas por el estimador son aceptables, debido a que se tiene un error grande en las mediciones.

En la tabla 4.16 se hace una comparación de los voltajes armónicos obtenidos contra los dados en [4] por Acha y Madrigal. Los voltajes sombreados con gris en la tabla 4.16 fueron obtenidos durante el proceso de estimación, mientras que los demás se calcularon con la expresión (3.8). Los voltajes marcados con negrita fueron los que dieron un mayor error, aunque para el caso del voltaje de las armónicas 23 y 25 en el nodo 1, se desprecia el error, ya que la magnitud de voltaje es igual a cero.

Arm	Nodo	Mag. de	Ang. de
		Corriente	Corrient
	1	.00385	-153.9417
5	3	.02743	-140.9078
	5	1.23683	82.05344
	1	.00819	145.0619
7	3	.01943	15.74035
	5	.5859	85.75977
	1	.00028	81.76109
11	3	.00415	2.64098
	5	.2474	83.06385
	1	.00005	103.0635
13	3	.00722	95.97329
	5	.18258	83.58582
	1	.00007	-129.7637
17	3	.00080	-123.4757
	5	.09924	83.31034
	1	.00004	17.20922
19	3	.00033	36.8439
	5	.07838	83.29746
	1	.00027	-87.63128
23	3	.00073	133.0551
	5	.05323	83.31541
	1	.00011	-179.9996
25	3	.00058	-68.18332
	5	.0443	83.31613

Tabla 4.14 Corrientes armónicas estimadas, con error en las mediciones, por el métodode Nguyen [19] para el sistema de 5 nodos

Tabla 4.15 Comparación de la corriente del Compensador Estático de Vars contra los estimados, con error en las mediciones, por el método de Nguyen [19] para el sistema de 5 nodos

Arm	Mag. de Corriente estimada	Mag. de Corriente real [4]	Error de la mag	Ang. de Corriente estimada	Ang. de corriente real [4]	Error del Ang
5	1.23683	1.1756	.06123	82.05344	83.3037	1.25026
7	.5859	.602952	.017052	85.75977	83.3037	2.45608
11	.2474	.24444	.00296	83.06385	83.3037	.23985
13	.18258	.1746	.00798	83.58582	83.3037	.28212
17	.09924	.102432	.0033192	83.31034	83.3037	.00664
19	.07838	.08148	.0031	83.29746	83.3037	.00624
23	.05323	.055872	.002642	83.31541	83.3037	.01171
25	.0443	.04656	.00226	83.31613	83.3037	.01243

Tabla 4.16	Comparaci	ón de los volta	jes armónicos	contra los estimado	s, con error en
las n	nediciones, p	por el método a	le Nguyen [19]	l para el sistema de	<u>5 nodos</u>

	Nod	Mag.	Mag.	Error	Ang. volt	Ang.	Error
Arm		Volt.	Volt.	de la	estim.	Volt.	del ang.
		estim.	flujos	Mag.		Flujos	
			[4]			[4]	
	1	.00007	.00007	0	108.122	108.122	0
_	2	.00594	.0057	0.00024	137.756	137.756	0
5	3	.16238	.16404	0.00166	99.9193	99.9193	0
	4	.20773	.20602	.00171	104.0009	103.588	.4129
	5	.54437	.51721	.02716	147.9168	148.764	.8472
	1	.00005	.00005	0	58.54308	58.5431	.00002
_	2	.00282	.00296	0.00014	118.915	118.915	0
7	3	.12475	.121	0.00375	50.8093	50.8093	0
	4	.15256	.15059	.00197	54.20296	55.3242	1.12124
	5	.31468	.32764	.01296	148.0398	145.768	2.2718
	1	.00001	.00001	0	-4.7287	-4.7287	0
	2	.00155	.00153	0.00002	147.369	147.369	0
11	3	.03043	.02973	0.0007	-11.688	-11.688	0
	4	.03616	.03514	.00102	-8.34233	-6.1935	2.14883
	5	.23149	.22891	.00258	150.2449	150.374	.1291
	1	.00000	.000005	.000005	-16.527	-16.527	0
10	2	.00165	.001586	.000064	148.1139	148.1139	0
13	3	.01833	.018437	.000107	-22.7313	-22.7312	.0001
	4	.023320	.020785	.002535	-14.3794	-16.8994	2.52
	5	.22934	.219951	.009389	148.5175	148.305	.2125
	1	.00000	.000002	.000002	-40.3936	-40.3931	.0005
. –	2	.00195	.002009	.000059	137.4436	137.4432	.0004
17	3	.01226	.012373	.00113	-42.1913	-42.1913	0
	4	.01148	.012009	.000529	-35.5889	-35.5594	.0295
	5	.25212	.260092	.007972	136.6507	136.6535	.0028
	1	.00000	.000001	.000001	-66.9142	-66.9141	.00001
10	2	.002487	.002573	.000086	120.6838	120.6839	.0001
19	3	.01245	.013101	.000651	-61.1692	-61.1692	0
	4	.011	.011373	.000373	-53.9049	-53.8979	.007
	5	.31438	.326777	.012397	119.8401	119.8392	.0009
	1	0	0	0	71.47854	162.952	
22	2	.00205	.00215	0.0001	39.5131	39.513	.0001
23	3	.00943	.00924	0.00019	-146.11	-146.11	0
	4	.00526	.00567	.00041	-136.055	-136.22	.165
	5	.25356	.26618	.012624	38.66584	38.6734	.00756
	1	0	0	0	164.7571	142.82	0.000
٦ <i>-</i>	2	.00117	.00122	0.00005	19.0292	19.0293	.0001
25	3	.0045	.00547	0.00097	-169.17	-169.17	0
	4	.00254	.00253	.0001	-156.734	-156.22	.514
	5	.14283	.15003	.0072	18.19599	18.1738	.02219

Como se observa en las tablas 4.15 y 4.16, al introducir error en las mediciones los resultados no son exactos como en el caso ideal, aunque al comparar los resultados obtenidos con el estimador contra los dados en [4] los resultados son aceptables; el único problema que presentó el estimador fue que la corriente estimada en el nodo 3 es muy alta; esto pudo suceder debido a que el error en las mediciones permitido por el Estándar es muy grande, además de que ambos estimadores son deterministas.

La tabla 4.17 enlista el THD obtenido para cada nodo del sistema de prueba. En esta tabla se observa que la distorsión armónica no rebasa el 1.5% que indica el Estándar 519-1992[28] de la IEEE, por lo que se sabe que hay una fuente en el quinto nodo, pero no es necesaria la penalización.

Nguyen[19] <u>para et sistem</u>a de 3 nodo. <u>Nod</u> %THD 1 .000084 2 .007988 3 .213171 4 .267844

5

Tabla 4.17 THD de los voltajes, sin error en las mediciones, por el método de Nguyen[19] <u>para el sistem</u>a de 5 nodos

4.3 ESTIMACIÓN DE UN SISTEMA DE 14 NODOS CON UNA FUENTE DE ARMÓNICAS

.872042

Los datos del sistema de prueba empleado se encuentran en el Apéndice A de este trabajo, al igual que en [12-14]. Debido a que las referencias [12-14] no enlistan los voltajes armónicos obtenidos por el estudio de flujos, se implemento un programa que resuelva flujos armónicos por el método de inyecciones de corriente en FORTRAN 90. Para validar este programa, se compararon los resultados del sistema de 5 nodos con los dados en [4], mismos que se encuentran reportados en [31].

La figura 4.2 muestra el sistema de prueba, mientras que la tabla 4.18 los voltajes armónicos obtenidos por el programa de flujos armónicos.

La tabla 4.19 enlista el porcentaje de armónicas que introduce la fuente de armónicas al sistema, que para este caso es un Compensador Estático de Vars conectado en el nodo 8 de la red.

V/h	5	7	11	13	17	19	23	25	29
$ V ^1$	0.1689	0.0618	0.0106	0.0084	0.0121	0.0127	0.0099	0.0015	0.002
θ^1	132.18	12.09	-12.54	95.643	89.375	172.22	17.688	108.51	106.63
$ V ^2$	0.1807	0.0637	0.0098	0.0073	0.0087	0.0079	0.0045	0.0006	0.0011
θ^2	129.57	9.6918	-14.45	94.1	88.697	173.21	34.562	128.99	133.62
$ V ^{3}$	0.2049	0.0593	0.0057	0.0031	0.0009	0.0043	0.0089	0.0011	0.0008
θ^3	102.11	-18.47	-41.01	69.828	-159	-57.59	116.96	179.8	-47.69
$ V ^{4}$	0.2442	0.0759	0.005	0.0016	0.009	0.0131	0.0131	0.0018	0.0009
θ^4	142.09	23.704	12.539	170.85	-95.74	-6.294	-147.8	-56.88	84.02
$ V ^{5}$	0.2291	0.0758	0.0085	0.0039	0.0042	0.01	0.0201	0.0045	0.0114
θ^5	138.51	19.089	-3.236	109.57	-102.6	-8.299	-150.1	-61.97	-65.1
$ V ^{6}$	0.2119	0.0693	0.0151	0.0061	0.0016	0.0015	0.0065	0.0015	0.0039
θ^{6}	139.38	19.358	-9.04	84.544	92.646	-25.45	-159.3	-69.4	-70.76
$ V ^{7}$	0.4343	0.1044	0.442	0.037	0.05	0.0321	0.0447	0.0156	0.0588
θ^7	177.88	77.529	159.62	-96.94	-88.45	6.8693	11.779	111.57	114.87
$ V ^{8}$	0.7486	0.251	0.2357	0.1623	0.1854	0.1102	0.1718	0.0573	0.2078
θ^8	-149.2	141.09	169.5	-93.89	-87.66	8.3377	13.074	111.93	115.01
V ⁹	0.4727	0.1699	0.0533	0.022	0.0131	0.0065	0.0046	0.0014	0.0039
θ^9	155.6	37.997	6.1684	94.946	95.92	-171.4	-167.9	-67.15	-64.14
$ V ^{10}$	0.4205	0.1484	0.0447	0.0183	0.0104	0.0049	0.0046	0.0013	0.0036
θ^{10}	152.23	34.17	2.6555	91.717	93.341	-172.1	-168.3	-69.79	-67.3
$ V ^{11}$	0.3154	0.1079	0.0295	0.012	0.0059	0.0018	0.0053	0.0014	0.0036
θ^{11}	146.98	28.335	-1.613	88.602	91.942	-160.6	-164.2	-70.61	-70
$ V ^{12}$	0.2294	0.0734	0.0161	0.0063	0.002	0.0009	0.0054	0.0013	0.0033
θ^{12}	135.12	14.457	-14.61	78.452	85.053	-39.67	-164.5	-73.93	-74.54
$ V ^{13}$	0.244	0.0785	0.0179	0.0071	0.0026	0.0006	0.0052	0.0013	0.0032
θ^{13}	137.01	15.73	-13.43	78.893	84.734	-59.03	-165.3	-74.23	-76.56
$ V ^{14}$	0.3634	0.1209	0.033	0.0132	0.007	0.0029	0.0039	0.0011	0.0028
$\theta^{\overline{14}}$	141.91	23.022	-7.131	82.867	86.525	-174.7	-173.2	-76.2	-73.7

Tabla 4.18 Voltajes armónicos del sistema de 14 nodos [31]

Tabla 4.19 Corriente Armónica de la Fuente de Armónicas [12-14]

Armónica	% de la corriente fundamental	Desfasamiento	Armónica	% de la corriente fundamental	Desfasamiento
5	7.02	46.92	19	0.32	173.43
7	2.5	-29.87	23	0.43	178.02
11	1.36	-23.75	25	0.13	-83.45
13	0.75	71.5	29	0.4	-80.45
17	0.62	77.12			

Fig4.2 Sistema de prueba de 14 nodos

4.3.1 ESTIMACIÓN DE UN SISTEMA DE 14 NODOS CON UNA FUENTE DE ARMÓNICAS SIN ERROR EN MEDICIONES POR EL MÉTODO DE HEYDT[15]

Al igual que en el sistema de 5 nodos del cual ya se enlistaron los resultados, se probó el sistema de 14 nodos con el método de Heydt [15], sin error en las mediciones, mismas que se encuentran en la tabla 4.20

Las corrientes armónicas nodales estimadas, con las mediciones dadas en la tabla 4.20, se enlistan en la tabla 4.21. Como se observa en esta tabla, se ha identificado la fuente armónica en el nodo 8, ya que se ve que en este nodo hay una corriente armónica, mientras que en los demás, la corriente es igual a cero o valores muy pequeños (como en los nodos 1 y 3 para la quinta armónica). Por esto se concluye que la estimación se ha realizado correctamente.

Medición\h	5	7	11	13	17	19 19	23	25	29
$ \mathbf{V} ^2$	0.1807	0.0637	0.0098	0.0073	0.0087	0.0079	0.0045	0.0006	0.0011
Θ^2	129.57	9.6918	-14.45	94.1	88.697	173.21	34.562	128.99	133.62
$ \mathbf{V} ^4$	0.2442	0.0759	0.005	0.0016	0.009	0.0131	0.0131	0.0018	0.0009
Θ^4	142.09	23.704	12.539	170.85	-95.74	-6.294	-147.8	-56.88	84.02
$ \mathbf{V} ^{5}$	0.2291	0.0758	0.0085	0.0039	0.0042	0.01	0.0201	0.0045	0.0114
Θ^5	138.51	19.089	-3.236	109.57	-102.6	-8.299	-150.1	-61.97	-65.1
$ \mathbf{V} ^{6}$	0.2119	0.0693	0.0151	0.0061	0.0016	0.0015	0.0065	0.0015	0.0039
Θ^6	139.38	19.358	-9.04	84.544	92.646	-25.45	-159.3	-69.4	-70.76
$ \mathbf{V} ^7$	0.4343	0.1044	0.442	0.037	0.05	0.0321	0.0447	0.0156	0.0588
Θ^7	177.88	77.529	159.62	-96.94	-88.45	6.8693	11.779	111.57	114.87
$ \mathbf{V} ^{10}$	0.4205	0.1484	0.0447	0.0183	0.0104	0.0049	0.0046	0.0013	0.0036
Θ^{10}	152.23	34.17	2.6555	91.717	93.341	-172.1	-168.3	-69.79	-67.3
$ \mathbf{V} ^{\Pi}$	0.3154	0.1079	0.0295	0.012	0.0059	0.0018	0.0053	0.0014	0.0036
Θ^{11}	146.98	28.335	-1.613	88.602	91.942	-160.6	-164.2	-70.61	-70
$ V _{12}^{12}$	0.2294	0.0734	0.0161	0.0063	0.002	0.0009	0.0054	0.0013	0.0033
Θ^{12}	135.12	14.457	-14.61	78.452	85.053	-39.67	-164.5	-73.93	-74.54
$ V _{12}^{13}$	0.244	0.0785	0.0179	0.0071	0.0026	0.0006	0.0052	0.0013	0.0032
Θ_{14}^{13}	137.01	15.73	-13.43	78.893	84.734	-59.03	-165.3	-74.23	-76.56
$ V _{14}^{14}$	0.3634	0.1209	0.033	0.0132	0.007	0.0029	0.0039	0.0011	0.0028
Θ_{14}^{14}	141.91	23.022	-7.131	82.867	86.525	-174.7	-173.2	-76.2	-73.7
$ \mathbf{I} ^2$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ \mathbf{I} ^4$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α_{f}^{4}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I ⁵	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ \mathbf{I} ^{6}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α_{-}^{6}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ \mathbf{I} ^{\prime}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α ⁷	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ \mathbf{I} _{10}^{10}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{10}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ I ^{11}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{11}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ I ^{12}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{12}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ I ^{13}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{13}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ I ^{14}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{14}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Tabla 4.20 Mediciones para la estimación por el método de Heydt [15], sin error en lasmediciones para el sistema de 14 nodos

En la tabla 4.22 se comparan las corrientes estimadas contra las dadas en [12-14]. Al observar la comparación de las corrientes armónicas se nota que son exactas.

En la tabla 4.23 se comparan los voltajes obtenidos con la expresión (3.8), empleando las corrientes armónicas estimadas contra los obtenidos por el programa de flujos armónicos y reportados en [31]. Como se observa en esta tabla, los voltajes armónicos calculados son exactos.

Arm.	Nodo	Mag. de	Ang. de la	
		Corriente	Corriente	
5	1	0.00001	95.74137	
	3	0.00001	-62.14679	
	8	0.51213	152.43	
	9	0	163.7817	
7	1	0	-14.07862	
	3	0	-96.04494	
	8	0.18238	75.63978	
	9	0	-8.31913	
11	1	0	118.4436	
	3	0	-4.47409	
	8	0.09922	81.76008	
	9	0	84.58949	
13	1	0	-0.68346	
	3	0	-136.6172	
	8	0.05472	177.01	
	9	0	-5.84283	
17	1	0	-103.2684	
	3	0	37.05594	
	8	0.04523	-177.37	
	9	0	178.1711	
19	1	0	-79.08955	
	3	0	-59.31078	
	8	0.02335	-81.06001	
	9	0	-81.74386	
23	1	0	136.3175	
	3	0	49.15891	
	8	0.03137	-76.46999	
	9	0	93.41118	
25	1	0	33.47577	
	3	0	-174.144	
	8	0.00948	22.0599	
	9	0	-161.0872	
	1	0	21.07458	
29	3	0	173.9627	
<i>L</i> J	8	0.02918	25.067	
	9	0	22.30834	

Tabla 4.21 Corrientes armónicas estimadas, sin error en las mediciones, por el métodode Heydt [15] para el sistema de 14 nodos

La tabla 4.24 muestra el THD del voltaje para cada nodo de la red; y como se puede observar, el THD no sobrepasa al 1.5% de lo estipulado por el Estándar de la IEEE 519-1998 [28], por lo que no es necesaria la penalización. A pesar de ello se tiene el conocimiento de que existe una fuente armónica en el nodo 8 para futuros estudios en la red.

14 nodos						
Armónica	Mag. de Corrient estimada	<i>Mag. de</i> <i>Corrient</i> <i>real</i> [12- 14]	Error de la mag.	Ang. de Ang. de Error Corrient Corrient del estimada real [12- Ang. 14]		
5	0.51213	0.51213	0	152.43 152.43 0		
7	0.18238	0.18238	0	75.64016 75.64 0.00016		
11	0.09922	0.09922	0	81.76008 81.76 0.00008		
13	0.05472	0.05472	0	177.01 177.01 0		
17	0.04523	0.04523	0	-177.37 -177.37 0		
19	0.02335	0.02335	0	-81.06 -81.06 0		
23	0.03137	0.03137	0	-76.4699 -76.47 0.0001		
25	0.00948	0.00948	0	22.0598 22.06 0.0002		
29	0.02918	0.02918	0	25.06 25.06 0		

Tabla 4.22 Comparación de la corriente del Compensador Estático de Vars contra los estimados, sin error en las mediciones, por el método de Heydt [15] para el sistema de 14 nodos

Tabla 4.23 Comparación de los voltajes armónicos contra los estimados, sinn error enlas mediciones, por el método de Heydt [15] para el sistema de 14 nodos

	Nod	Mag.	Mag.	Error	Ang.	Ang.	Error
Arm		Volt.	Volt.	de la	volt	Volt.	del ang.
		estim.	Flujos	Mag.	estim.	Flujos	
	1	0.1689	0.1689	0	132.18	132.18	0
	2	0.1807	0.1807	0	129.57	129.57	0
	3	0.2049	0.2049	0	102.11	102.11	0
	4	0.2442	0.2442	0	142.09	142.09	0
	5	0.2291	0.2291	0	138.51	138.51	0
	6	0.2119	0.2119	0	139.38	139.38	0
5	7	0.4342	0.4343	0.0001	177.88	177.88	0
Э	8	0.7486	0.7486	0	-149.2	-149.2	0
	9	0.4727	0.4727	0	155.6	155.6	0
	10	0.4205	0.4205	0	152.24	152.23	0.01
	11	0.3154	0.3154	0	146.98	146.98	0
	12	0.2294	0.2294	0	135.12	135.12	0
	13	0.2439	0.244	0.0001	136.01	136.01	0
	14	0.3634	0.3634	0	141.91	141.91	0
	1	0.0618	0.0618	0	12.089	12.089	0
	2	0.0637	0.0637	0	9.9611	9.6918	0.0007
	3	0.0593	0.0593	0	-18.48	-18.47	0.01
	4	0.0759	0.0759	0	23.703	23.704	0.001
	5	0.0758	0.0758	0	19.088	19.089	0.001
	6	0.0693	0.0693	0	19.358	19.358	0
7	7	0.1044	0.1044	0	77.529	77.528	0.001
7	8	0.251	0.251	0	141.09	141.09	0
	9	0.1699	0.1699	0	37.997	37.997	0
	10	0.1484	0.1484	0	34.171	34.17	0.001
	11	0.1079	0.1079	0	28.335	28.335	0
	12	0.0734	0.0734	0	14.547	14.547	0
	13	0.0785	0.0785	0	15.73	15.73	0
	14	0.1209	0.1209	0	23.022	23.022	0
Arm	Nod	Mag.	Mag.	Error	Ang.	Ang.	Error
-----	-----	--------------	-----------------	--------------	--------------	-----------------	----------
		Volt.	Volt. Eluioa	ae la Maa	volt	Volt. Eluioa	ael ang.
	1	<i>esum.</i>	<u>r iujos</u>	Mag.	<i>esum.</i>	<u>r iujos</u>	0.01
		0.0106	0.0106	0	-12.55	-12.54	0.01
	2	0.0098	0.0098	0	-14.45	-14.45	0
	3	0.005/	0.0057	0	-41	-41.01	0.01
	4	0.005	0.005	0	12.452	12.539	0.087
	5	0.0085	0.0085	0	-3.234	-3.236	0.002
	0	0.0151	0.0151	0	-9.04	-9.04	0
11	/	0.0442	0.0442	0	159.62	159.62	0
	8	0.2357	0.2357	0	169.5	169.5	0
	9	0.0533	0.0533	0	6.1684	6.1684	0
	10	0.0447	0.044 /	0	2.6554	2.6555	0.0001
		0.0295	0.0295	0	-1.613	-1.613	0
	12	0.0161	0.0161	0	-14.46	-14.46	0
	13	0.0179	0.0179	0	-13.43	-13.43	0
	14	0.033	0.033	0	-7.131	-7.131	0
	1	0.0084	0.0084	0	95.644	95.643	0.001
	2	0.0073	0.0073	0	94.102	94.1	0.002
	3	0.0031	0.0031	0	69.826	69.828	0.002
	4	0.0016	0.0016	0	170.86	170.85	0.01
	5	0.0039	0.0039	0	109.57	109.57	0
	6	0.0061	0.0061	0	84.544	84.544	0
12	7	0.037	0.037	0	-96.94	-96.94	0
13	8	0.1623	0.1623	0	-93.89	-93.89	0
	9	0.022	0.022	0	94.946	94.946	0
	10	0.0183	0.0183	0	91.717	91.717	0
	11	0.012	0.012	0	88.602	88.602	0
	12	0.0063	0.0063	0	78.452	78.452	0
	13	0.0071	0.0071	0	78.894	78.893	0.001
	14	0.0132	0.0132	0	82.867	82.867	0
	1	0.0121	0.0121	0	89.375	89.375	0
	2	0.0087	0.0087	0	88.697	88.697	0
	3	0.0009	0.0009	0	-159	-159	0
	4	0.009	0.009	0	-95.74	-95.74	0
	5	0.0042	0.0042	0	-102.6	-102.6	0
	6	0.0016	0.0016	0	92.646	92.646	0
15	7	0.05	0.05	0	-88.45	-88.45	0
17	8	0.1854	0.1854	0	-87.66	-87.66	0
	9	0.0131	0.0131	0	95.92	95.92	0
	10	0.0104	0.0104	0	93.341	93.341	0
	11	0.0059	0.0059	0	91.452	91.942	0.49
	12	0.002	0.002	0	85.053	85.053	0
	13	0.0026	0.0026	0	84.734	84.734	0
	14	0.007	0.007	0	86.525	86.525	0

Arm	Nod	Mag.	Mag.	Error	Ang.	Ang.	Error dol ana
		VOII. ostim	VOU. fluios	ae ia Maa	voll ostim	VOU. Fluios	aei ang.
	1	0.0127	0.0127	0	172.22	172.22	0
	2	0.0127	0.0127	0	172.22	172.22	0
	2	0.0079	0.0079	0	57 50	57 50	0
	1	0.0043	0.0043	0	6 206	6 204	0
	5	0.0131	0.0131	0	-0.290	-0.294	0.002
	6	0.01	0.01	0	-0.501	-0.277	0.002
	7	0.0013	0.0013	0	-23.40 6 8692	6 8693	0.001
19	8	0.1102	0.0321	0	8 3376	8 3377	0.0001
	9	0.0065	0.0065	0	-1714	-171 4	0.0001
	10	0.0005	0.0000	0	-172.06	-172.06	0
	11	0.0049	0.0049	0	-160.6	-160.6	0
	12	0.0009	0.0009	0	-39.69	-39.67	0
	13	0.0006	0.0006	0	-59.05	-59.03	0
	14	0.0029	0.0029	0	-174.7	-174.7	Ő
	1	0.0099	0.0099	0	17 69	17 688	0.002
	2	0.0045	0.0045	0	34.566	34.562	0.004
	3	0.0089	0.0089	Ő	116.95	117	0.05
	4	0.0131	0.0131	0	-147.8	-147.8	0
	5	0.0201	0.0201	0	-150	-150.1	0.1
	6	0.0065	0.0065	0	-159.3	-159.3	0
	7	0.0447	0.0447	0	11.779	11.779	0
23	8	0.1718	0.1718	0	13.074	13.074	0
	9	0.0046	0.0046	0	-167.9	-167.9	0
	10	0.0046	0.0046	0	-168.3	-168.3	0
	11	0.0053	0.0053	0	-164.2	-164.2	0
	12	0.0054	0.0054	0	-164.5	-164.5	0
	13	0.0052	0.0052	0	-165.2	-165.3	0.1
	14	0.0039	0.0039	0	-173.2	-173.2	0
	1	0.0015	0.0015	0	108.51	108.51	0
	2	0.0006	0.0006	0	129	129	0
	3	0.0011	0.0011	0	176.78	176.8	0.02
	4	0.0018	0.0018	0	-56.87	-56.88	0.01
	5	0.0045	0.0045	0	-67.97	-61.97	0
	6	0.0015	0.0015	0	-69.4	-69.4	0
35	7	0.0156	0.0156	0	111.57	111.57	0
25	8	0.0573	0.0573	0	111.93	111.93	0
	9	0.0014	0.0014	0	-67.15	-67.15	0
	10	0.0013	0.0013	0	-69.79	-69.79	0
	11	0.0014	0.0014	0	-70.61	-70.61	0
	12	0.0013	0.0013	0	-73.93	-73.93	0
	13	0.0013	0.0013	0	-74.23	-74.23	0
	14	0.0011	0.0011	0	-76.2	-76.2	0

Arm	Nod	Mag. Volt. estim.	Mag. Volt. flujos	Error de la Mag.	Ang. volt estim.	Ang. Volt. Flujos	Error del ang.
	1	0.002	0.002	0	106.63	106.63	0
	2	0.0011	0.0011	0	133.62	133.62	0
	3	0.0008	0.0008	0	-47.66	-47.69	0.03
	4	0.0009	0.0009	0	84.007	84.02	0.013
	5	0.0114	0.0114	0	-65.1	-65.1	0
	6	0.0039	0.0039	0	-70.76	-70.76	0
20	7	0.0588	0.0588	0	114.87	114.87	0
29	8	0.2078	0.2078	0	115.01	115.01	0
	9	0.0039	0.0039	0	-64.14	-64.14	0
	10	0.0036	0.0036	0	-67.3	-67.3	0
	11	0.0036	0.0036	0	-70.01	-70.01	0
	12	0.0033	0.0033	0	-74.54	-74.54	0
	13	0.0032	0.0032	0	-74.56	-74.56	0
	14	0.0028	0.0028	0	-73.7	-73.7	0

Tabla 4.24 THD de los voltajes, sin error en las mediciones, por el método de Heydt[15] para el sistema de 14 nodos Nod %THD

noa	%1HD
1	0.171258
2	0.18408
3	0.204867
4	0.249588
5	0.234961
6	0.209015
7	0.45172
8	0.891185
9	0.498535
10	0.441307
11	0.322298
12	0.229463
13	0.24581
14	0.378886

4.3.2 ESTIMACIÓN DE UN SISTEMA DE 14 NODOS CON UNA FUENTE DE Armónicas Sin Error En Mediciones Por El Método De Nguyen[19]

Se realizó la estimación de estado armónica por el método de Nguyen al sistema de 14 nodos mostrado en la figura 4.2; las mediciones sin error se enlistan en la tabla 4.25.

Medición\h	5	7	11	13	17	19	23	25	29
$ \mathbf{V} ^1$	0.1689	0.0618	0.0106	0.0084	0.0121	0.0127	0.0099	0.0015	0.002
Θ^1	132.18	12.09	-12.54	95.643	89.375	172.22	17.688	108.51	106.63
$ \mathbf{V} ^3$	0.2049	0.0593	0.0057	0.0031	0.0009	0.0043	0.0089	0.0011	0.0008
Θ^3	102.11	-18.47	-41.01	69.828	-159	-57.59	116.96	179.8	-47.69
$ \mathbf{V} ^5$	0.2291	0.0758	0.0085	0.0039	0.0042	0.01	0.0201	0.0045	0.0114
Θ^5	138.51	19.089	-3.236	109.57	-102.6	-8.299	-150.1	-61.97	-65.1
$ \mathbf{V} ^7$	0.4343	0.1044	0.442	0.037	0.05	0.0321	0.0447	0.0156	0.0588
Θ^7	177.88	77.529	159.62	-96.94	-88.45	6.8693	11.779	111.57	114.87
$ \mathbf{V} ^{8}$	0.7486	0.251	0.2357	0.1623	0.1854	0.1102	0.1718	0.0573	0.2078
Θ^8	-149.2	141.09	169.5	-93.89	-87.66	8.3377	13.074	111.93	115.01
$ V ^{10}$	0.4205	0.1484	0.0447	0.0183	0.0104	0.0049	0.0046	0.0013	0.0036
Θ^{10}	152.23	34.17	2.6555	91.717	93.341	-172.1	-168.3	-69.79	-67.3
$ \mathbf{V} ^{\mathbf{H}}$	0.3154	0.1079	0.0295	0.012	0.0059	0.0018	0.0053	0.0014	0.0036
Θ^{II}	146.98	28.335	-1.613	88.602	91.942	-160.6	-164.2	-70.61	-70
$ V ^{12}$	0.2294	0.0734	0.0161	0.0063	0.002	0.0009	0.0054	0.0013	0.0033
Θ_{12}^{12}	135.12	14.457	-14.61	78.452	85.053	-39.67	-164.5	-73.93	-74.54
$ V ^{13}$	0.244	0.0785	0.0179	0.0071	0.0026	0.0006	0.0052	0.0013	0.0032
Θ^{13}	137.01	15.73	-13.43	78.893	84.734	-59.03	-165.3	-74.23	-76.56
$ \mathbf{V} ^{14}$	0.3634	0.1209	0.033	0.0132	0.007	0.0029	0.0039	0.0011	0.0028
Θ^{14}	141.91	23.022	-7.131	82.867	86.525	-174.7	-173.2	-76.2	-73.7
$ \mathbf{I} ^2$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I ³	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
 I ⁴	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$\alpha_{\underline{f}}^{4}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I ⁵	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ລັ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I ⁹	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I ¹⁰	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{10}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ \mathbf{I} ^{11}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{11}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ \mathbf{I} ^{12}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{12}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ I ^{14}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{14}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Tabla 4.25 Mediciones para la estimación por el método de Nguyen [19], sin error en las mediciones para el sistema de 14 nodos

Las corrientes armónicas obtenidas por el estimador se encuentran en la tabla 4.26. Al observar esta tabla se distingue que en el nodo 8 es donde se encuentra conectada la fuente armónica, ya que se tiene un valor de corriente para cada armónica, mientras que en los demás nodos las corrientes armónicas son cero, por lo que resulta obvio decir que la fuente armónica se encuentra en este nodo.

Arm.	Nodo	Mag. de Corriente	Ang. de la Corriente
	1	0	-4.58455
5	7	0	-66.19855
	8	0.51213	152.4299
	13	0	-22.90273
	1	0	-106.5112
7	7	0	-156.0614
	8	0.18238	75.63984
	13	0	-70.82644
	1	0	-86.03762
11	7	0	100.9068
	8	0.09922	81.75999
	13	0	-98.70667
	1	0	-157.0492
13	7	0	-178.6724
	8	0.05472	177.01
	13	0	-19.42882
	1	0	95.11942
17	7	0	7.17862
	8	0.04523	-177.37
	13	0	178.2327
	1	0	-144.1553
19	7	0	-114.9792
	8	0.02335	-81.06001
	13	0	21.34664
• •	1	0	-30.96012
23	7	0	92.96058
	8	0.03137	-76.47
	13	0	69.37106
~-	1	0	48.58557
25	7	0	-151.9846
	8	0.00948	22.06002
	13	0	-158.5506
	1	0	-153.0176
29	7	0	14.99076
	8	0.02918	25.06006
	13	0	19.40301

Tabla 4.26 Corrientes armónicas estimadas, sin error en las mediciones, por el métodode Nguyen [19] para el sistema de 14 nodos

En la tabla 4.27 se comparan las corrientes armónicas obtenidas con el estimador contra las corrientes armónicas dadas en los artículos [12-14]. Al igual que el método de Heydt [15], el método de Nguyen [19] es exacto al comparar las corrientes armónicas estimadas de la fuente armónica contra los datos dados en [12-14], por lo que en este caso los dos estimadores han dado resultados correctos ya que ambos identificaron la fuente armónica.

Armónica	Mag. de	Mag. de	Error	Ang. de Ang. de Error
	Corrient	Corrient	de la	Corrient Corrient del
	estimada	real	mag.	estimada real Ang.
		[12-14]		[12-14]
5	0.51213	0.51213	0	152.4299 152.43 0.0001
7	0.18238	0.18238	0	75.63984 75.64 0.00016
11	0.09922	0.09922	0	81.75999 81.76 0.00001
13	0.05472	0.05472	0	177.01 177.01 0
17	0.04523	0.04523	0	-177.37 -177.37 0
19	0.02335	0.02335	0	-81.06 -81.06 0
23	0.03137	0.03137	0	-76.47 -76.47 0
25	0.00948	0.00948	0	22.06002 22.06 0.00002
29	0.02918	0.02918	0	25.06006 25.06 0.00006

Tabla 4.27 Comparación de la corriente del Compensador Estático de Vars contra los estimados, sin error en las mediciones, por el método de Nguyen [19] para el sistema de 14 nodos

En la tabla 4.28 se encuentran los voltajes armónicos estimados por el método de Nguyen [19] comparados contra los obtenidos por el programa de flujos de potencia armónica y que se encuentran reportados en [31]. Los voltajes armónicos sombreados de gris fueron calculados directamente con el estimador, mientras que los demás se obtuvieron con la expresión (3.8). Se observa en la tabla 4.28 que los voltajes armónicos calculados son exactos.

La tabla 4.29 contiene el THD del voltaje para cada nodo del sistema. De igual forma que en el caso anterior no se sobrepasa el valor permitido por el Estándar de la IEEE 519-1998 [28] para los sistemas de transmisión, por lo que en conclusión se sabe que existe una fuente armónica en el nodo 8 pero que no sobrepasa el 1.5% de THD permitido, por lo que no es necesario sancionar, pero si tener en cuenta la existencia de esta fuente para estudios posteriores de la red.

	Nod	Mag.	Mag.	Error	Ang.	Ang.	Error
Arm		Volt.	Volt.	de la	volt	Volt.	del ang.
	-	estim.	flujos	Mag.	estim.	Flujos	0
		0.1689	0.1689	0	132.18	132.18	0
	2	0.1807	0.1807	0	129.57	129.57	0
	3	0.2049	0.2049	0	102.11	102.11	0
	4	0.2442	0.2442	0	142.09	142.09	0
	5	0.2291	0.2291	0	138.51	138.51	0
	6	0.2119	0.2119	0	139.38	139.38	0
5	7	0.4342	0.4343	0.0001	177.88	177.88	0
0	8	0.7486	0.7486	0	-149.2	-149.2	0
	9	0.4727	0.4727	0	155.6	155.6	0
	10	0.4205	0.4205	0	152.24	152.23	0.01
	11	0.3154	0.3154	0	146.98	146.98	0
	12	0.2294	0.2294	0	135.12	135.12	0
	13	0.2439	0.244	0.0001	136.01	136.01	0
	14	0.3634	0.3634	0	141.91	141.91	0
	1	0.0618	0.0618	0	12.088	12.089	0.001
	2	0.0637	0.0637	0	9.691	9.6918	0.0008
	3	0.0593	0.0593	0	-18.47	-18.47	0
	4	0.0759	0.0759	0	23.703	23.704	0.001
	5	0.0758	0.0758	0	19.088	19.089	0.001
	6	0.0693	0.0693	0	19.358	19.358	0
7	7	0.1044	0.1044	0	77.53	77.528	0.002
/	8	0.251	0.251	0	141.09	141.09	0
	9	0.1699	0.1699	0	37.998	37.997	0.001
	10	0.1484	0.1484	0	34.171	34.17	0.001
	11	0.1079	0.1079	0	28.336	28.335	0.001
	12	0.0734	0.0734	0	14.547	14.547	0
	13	0.0785	0.0785	0	15.731	15.73	0.001
	14	0.1209	0.1209	0	23.023	23.022	0.001
	1	0.0106	0.0106	0	-12.53	-12.54	0.01
	2	0.0098	0.0098	0	-14.45	-14.45	0
	3	0.0057	0.0057	0	-41	-41.01	0.01
	4	0.005	0.0050	0	12.539	12.539	0
	5	0.0085	0.0085	0	-3.229	-3.236	0.007
	6	0.0151	0.0151	0	-9.04	-9.04	0
	7	0.0442	0.0442	0	159.62	159.62	0
11	8	0.2357	0.2357	0	169.5	169.5	0
	9	0.0533	0.0533	0	6.1684	6.1684	0
	10	0.0447	0.0447	0	2.6551	2.6555	0.0004
	11	0.0295	0.0295	0	-1.612	-1.613	0.001
	12	0.0161	0.0161	0	-14.46	-14.46	0
	13	0.0179	0.0179	0	-13.43	-13.43	0
	14	0.033	0.033	0	-7.132	-7.131	0.001

Tabla 4.28 Comparación de los voltajes armónicos contra los estimados, sin error enlas mediciones, por el método de Nguyen [19] para el sistema de 14nodos

Arm	Nod	Mag. Volt.	Mag. Volt.	Error de la	Ang. volt	Ang. Volt.	Error del ang.
		estim.	flujos	Mag.	estim.	Flujos	
	1	0.0084	0.0084	0	95.645	95.643	0.002
	2	0.0073	0.0073	0	94.1	94.1	0
	3	0.0031	0.0031	0	69.831	69.828	0.003
	4	0.0016	0.0016	0	170.85	170.85	0
	5	0.0039	0.0039	0	109.57	109.57	0
	6	0.0061	0.0061	0	84.544	84.544	0
12	7	0.037	0.037	0	-96.94	-96.94	0
13	8	0.1623	0.1623	0	-93.89	-93.89	0
	9	0.022	0.022	0	94.946	94.946	0
	10	0.0183	0.0183	0	91.917	91.717	0
	11	0.012	0.012	0	88.602	88.602	0
	12	0.0063	0.0063	0	78.452	78.452	0
	13	0.0071	0.0071	0	78.894	78.893	0.001
	14	0.0132	0.0132	0	82.867	82.867	0
	1	0.0121	0.0121	0	89.375	89.375	0
	2	0.0087	0.0087	0	88.696	88.697	0.001
	3	0.0009	0.0009	0	-159	-159	0
	4	0.009	0.009	0	-95.74	-95.74	0
	5	0.0042	0.0042	0	-102.6	-102.6	0
	6	0.0016	0.0016	0	92.646	92.646	0
17	7	0.05	0.05	0	-88.45	-88.45	0
1/	8	0.1854	0.1854	0	-87.66	-87.66	0
	9	0.0131	0.0131	0	95.92	95.92	0
	10	0.0104	0.0104	0	93.341	93.341	0
	11	0.0059	0.0059	0	91.942	91.942	0
	12	0.002	0.002	0	85.053	85.053	0
	13	0.0026	0.0026	0	84.734	84.734	0
	14	0.007	0.007	0	86.525	86.525	0
	1	0.0127	0.0127	0	172.22	172.22	0
	2	0.0079	0.0079	0	173.21	173.21	0
	3	0.0043	0.0043	0	-57.59	-57.59	0
	4	0.0131	0.0131	0	-6.294	-6.294	0
	5	0.01	0.01	0	-8.298	-8.299	0.001
	6	0.0015	0.0015	0	-25.45	-25.45	0
19	7	0.0321	0.0321	0	6.8694	6.8693	0.0001
17	8	0.1102	0.1102	0	8.3377	8.3377	0
	9	0.0065	0.0065	0	-171.4	-171.4	0
	10	0.0049	0.0049	0	-172.1	-172.1	0
		0.0018	0.0018	0	-160.6	-160.6	0
	12	0.0009	0.0009	0	-39.66	-39.67	0.01
	13	0.0006	0.0006	0	-59.032	-59.032	0
	14	0.0029	0.0029	0	-174.7	-174.7	0

A	Nod	Mag.	Mag.	Error	Ang.	Ang. Volt	Error
Arm		VOII. ostim	VOII. fluios	ue iu Maa	voll ostim	vou. Fluios	aei ang.
	1	0.0000	$\int u_{0} v_{0}$	0	17.60	17 688	0.002
	2	0.0099	0.0099	0	34 561	34 562	0.002
	2	0.0045	0.0043	0	116.06	117	0.001
		0.0009	0.0089	0	147.8	147.8	0.04
	4	0.0131	0.0131	0	-147.0	-147.0	0.1
	5	0.0201	0.0201	0	-150 3	-150.1	0.1
	7	0.0003	0.0003	0	11 778	11 770	0.001
23	8	0.1718	0.0447	0	13 074	13 074	0.001
	9	0.0046	0.0046	0	-167.9	-167.9	0
	10	0.0046	0.0046	0	-168.3	-168.3	0
	11	0.0040	0.0040	0	-164.2	-164.2	0
	12	0.0055	0.0055	0	-164.5	-164.5	0
	13	0.0052	0.0052	0	-165.2	-165.3	01
	14	0.0032	0.0032	0	-173.2	-173.2	0.1
	1	0.0015	0.0015	0	108 51	108 51	0
	2	0.0006	0.0006	0	129	129	0
	- 3	0.001	0.0011	0.0001	176.8	176.8	0
	4	0.0018	0.0018	0	-56.88	-56.88	0
	5	0.0045	0.0045	0	-61.97	-61.97	0
	6	0.0015	0.0015	0	-69.4	-69.4	0
	7	0.0156	0.0156	0	111.57	111.57	0
25	8	0.0573	0.0573	0	111.93	111.93	0
	9	0.0014	0.0014	0	-67.15	-67.15	0
	10	0.0013	0.0013	0	-69.79	-69.79	0
	11	0.0014	0.0014	0	-70.61	-70.61	0
	12	0.0013	0.0013	0	-73.93	-73.93	0
	13	0.0013	0.0013	0	-74.23	-74.23	0
	14	0.0011	0.0011	0	-76.2	-76.2	0
	1	0.002	0.002	0	106.64	106.63	0.01
	2	0.0011	0.0011	0	133.62	133.62	0
	3	0.0008	0.0008	0	-47.69	-47.69	0
	4	0.0009	0.0009	0	84.01	84.02	0.01
	5	0.0114	0.0114	0	-65.1	-65.1	0
	6	0.0039	0.0039	0	-70.76	-70.76	0
20	7	0.0588	0.0588	0	114.87	114.87	0
<u>L</u>)	8	0.2078	0.2078	0	115.01	115.01	0
	9	0.0039	0.0039	0	-64.14	-64.14	0
	10	0.0036	0.0036	0	-67.3	-67.3	0
	11	0.0036	0.0036	0	-70.01	-70.01	0
	12	0.0033	0.0033	0	-74.54	-74.54	0
	13	0.0032	0.0032	0	-74.56	-74.56	0
	14	0.0028	0.0028	0	-737	-737	0

Nod	%THD
1	0.171255
2	0.184078
3	0.204867
4	0.249587
5	0.234959
6	0.209014
7	0.451717
8	0.891184
9	0.498532
10	0.441304
11	0.322296
12	0.229462
13	0.245808
14	0.378884

Tabla 4.29 THD de los voltajes, sin error en las mediciones, por el método deNguyen[19] para el sistema de 14 nodos

4.3.3 ESTIMACIÓN DE UN SISTEMA DE 14 NODOS CON UNA FUENTE DE ARMÓNICAS CON ERROR EN MEDICIONES POR EL MÉTODO DE NGUYEN[19]

Una vez realizado el caso sin error para el sistema de 14 nodos para el caso ideal, se procede a hacer el caso con error un error de $\pm 5\%$ en las mediciones, según lo estipulado en el Estándar 519-1992 de la IEEE [28]. La tabla 4.30 enlista las mediciones mismas que están afectadas con un error representado por números aleatorios con una distribución uniforme con limites de $\pm 5\%$.

Las corrientes armónicas estimadas para este caso se encuentran enlistadas en la tabla 4.31. Es difícil identificar en que nodo se encuentra la fuente armónica, ya que como se observa, las corrientes armónicas son altas, por lo que se sospecharía la presencia de más de una fuente armónica y no es el caso. Esto puede suceder debido a dos situaciones; la primera que el error de las mediciones es muy alto, y la última que el método de Nguyen [19] y de Heydt [15] son deterministas.

La tabla 4.32 muestra la comparación de la corriente armónica estimada contra las mostradas en los artículos [12-14]. Al observar esta tabla se encuentra un error mayor que en el caso ideal, esto se debe a que el error mencionado por el Estándar 5191992 [28] es muy grande comparado con los medidores convencionales; a pesar de ello, los resultados son aceptables.

Medición \h	5	7	11	13	17	19	23	25	29
$ \mathbf{V} ^1$	0.1774	0.0643	0.0108	0.008	0.012	0.0133	0.0099	0.0015	0.0019
Θ^1	132.18	12.088	-12.54	95.643	89.375	172.22	17.688	108.51	106.63
$ \mathbf{V} ^3$	0.2134	0.0589	0.0057	0.0031	0.0009	0.0044	0.0092	0.0011	0.0007
Θ^3	102.11	-18.47	-41.01	69.828	-159	-57.59	116.96	176.8	-47.69
$ \mathbf{V} ^{5}$	0.2268	0.0752	0.0082	0.0039	0.0041	0.0099	0.0197	0.0044	0.0118
Θ^5	138.51	19.089	-3.236	109.57	-102.6	-8.3	-150.1	-61.97	-65.1
$ \mathbf{V} ^7$	0.4172	0.1011	0.0436	0.037	0.0482	0.0318	0.0455	0.0153	0.0566
Θ^7	177.88	77.528	159.62	-96.94	-88.45	6.8693	11.779	111.57	114.87
$ \mathbf{V} ^{8}$	0.7136	0.2487	0.2262	0.164	0.1856	0.1075	0.1726	0.0597	0.2053
Θ_{10}^8	-149.2	141.09	169.5	-93.89	-87.66	8.3377	13.074	111.93	115.01
$ \mathbf{V} ^{10}$	0.4336	0.1482	0.0426	0.0178	0.0101	0.005	0.0048	0.0014	0.0035
Θ^{10}	152.23	34.17	2.6555	91.717	93.341	-172.1	-168.3	-69.79	-67.3
$ \mathbf{V} ^{\Pi}$	0.3149	0.1039	0.0305	0.0118	0.0062	0.0018	0.0055	0.0013	0.0036
Θ^{II}	146.98	28.335	-1.613	88.602	91.942	-160.6	-164.2	-70.61	-70.01
$ V ^{12}$	0.2318	0.0697	0.0155	0.0063	0.0021	0.001	0.0056	0.0013	0.0032
Θ^{12}	135.12	14.547	-14.46	78.452	85.053	-39.67	-164.4	-73.93	-74.5
$ V ^{13}$	0.2497	0.0767	0.0172	0.007	0.0026	0.0006	0.0052	0.0013	0.0033
Θ^{13}	136.01	15.73	-13.43	78.893	84.734	-59.03	-165.2	-74.23	-74.56
$ V ^{14}$	0.3545	0.1153	0.0336	0.0137	0.0068	0.0028	0.0041	0.0011	0.0029
Θ^{14}	141.91	23.022	-7.131	82.867	86.525	-174.7	-173.2	-76.2	-73.7
$ \mathbf{I} ^2$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α_{2}^{2}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
 I ⁴	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$\alpha_{\underline{1}}^{4}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I ⁵	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α ⁵	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
 I ⁶	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
 I ⁹	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ {\bf I} ^{10}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{10}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ I ^{11}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{11}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ I ^{12}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{12}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ I ^{14}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{14}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Tabla 4.30 Mediciones para la estimación por el método de Nguyen [19], con error en las mediciones para el sistema de 14 nodos

En la tabla 4.33 se comparan los voltajes armónicos obtenidos por el estimador contra los voltajes obtenidos por el programa que resuelve flujos armónicos, mismos que se encuentran en [31]. Al revisar la tabla se aprecia un mayor error que en el caso ideal, aunque los resultados siguen siendo aceptables. A pesar de que al comparar los datos estimados contra los obtenidos por los flujos armónicos son buenos, el estimador falla al identificar la ubicación de la fuente de armónicas.

Arm.	Nodo	Mag. de	Ang. de la
		Corriente	Corriente
	1	0.02916	49.8438
5	7	0.4248	-129.4915
	8	0.48656	152.8302
	13	0.02006	56.54558
	1	0.00657	-74.91571
7	7	0.00588	164.9562
	8	0.18078	75.05639
	13	0.00352	-64.37756
	1	0.00056	-94.08205
11	7	0.0012	63.56954
	8	0.09468	81.83218
	13	0.0097	87.59126
	1	0.0003	-166.5771
13	7	0.00107	-4.68221
	8	0.05548	176.9963
	13	0.00017	176.8362
	1	0.00008	-0.38016
17	7	0.00224	2.18618
	8	0.04585	-177.3839
	13	0.00004	-1.1234
	1	0.00017	-129.9248
19	7	0.0005	-80.87141
	8	0.02263	-81.04597
	13	0.00004	66.15429
	1	0.00048	-45.70518
23	7	0.00039	-82.88332
	8	0.03138	-76.46255
	13	0.00005	-83.32413
	1	0.00001	185.4036
25	7	0.00075	-158.0901
	8	0.01007	22.05001
	13	0.00002	-157.831
	1	0.00005	-146.13
29	7	0.00098	-155.1679
<u> </u>	8	0.02911	25.05814
	13	0.00005	-161.5341

Tabla 4.31 Corrientes armónicas estimadas, con error en las mediciones, por el métodode Nguyen [19] para el sistema de 14

La tabla 4.34 contiene el THD del voltaje para cada nodo de la red. A pesar del error en las mediciones, ninguno de los nodos sobrepasa el valor estipulado por el Estándar 519-1992 [28], así que no es necesario aplicar sanciones.

	ue 17 h0u05									
Armónica	Mag. de Corrient estimada	Mag. de Corrient real [12-	Error de la mag.	Ang. de Corrient estimada	Ang. de Corrient real [12-	Error del Ang.				
		14]			14]					
5	0.48656	0.51213	0.02557	152.8302	152.43	0.4002				
7	0.18078	0.18238	0.0016	75.05639	75.64	0.58361				
11	0.09468	0.09922	0.00454	81.83218	81.76	0.07218				
13	0.05548	0.05472	0.00076	176.9963	177.01	0.0133				
17	0.04585	0.04523	0.00062	-177.3839	-177.37	0.0139				
19	0.02263	0.02335	0.00072	-81.04597	-81.06	0.01403				
23	0.03138	0.03137	0.00001	-76.46255	-76.47	0.00745				
25	0.01007	0.00948	0.00059	22.05001	22.06	0.01001				
29	0.02911	0.02918	0.00007	25.05814	25.06	0.00186				

Tabla 4.32 Comparación de la corriente del Compensador Estático de Vars contra los estimados, con error en las mediciones, por el método de Nguyen [19] para el sistema de 14 nodos

Tabla 4.33 Comparación de los voltajes armónicos contra los estimados, con error en las mediciones, por el método de Nguyen [19] para el sistema de 14 nodos

Arm	Nod	Mag. Volt	Mag. Volt	Error de la	Ang. volt	Ang. Volt	Error del ana
Атт		estim.	flujos	Mag.	estim.	Flujos	uei ung.
	1	0.1733	0.1689	0.0044	134.18	132.18	2
	2	0.1847	0.1807	0.004	129.42	129.57	0.15
	3	0.1999	0.2049	0.005	103.96	102.11	1.87
	4	0.2419	0.2442	0.0023	141.81	142.09	0.28
	5	0.2234	0.2291	0.0057	140.40	138.51	1.89
	6	0.2123	0.2119	0.0004	139.39	139.38	0.01
-	7	0.4056	0.4343	0.0287	178.35	177.88	0.47
3	8	0.7182	0.7486	0.0304	-146.8	-149.2	2.4
	9	0.4753	0.4727	0.0026	155.4	155.6	0.2
	10	0.3974	0.4205	0.0231	155.08	152.23	2.85
	11	0.3021	0.3154	0.0133	149.46	146.98	2.52
	12	0.2294	0.2294	0	137.29	135.12	2.17
	13	0.2462	0.244	0.0022	138.18	136.01	2.17
_	14	0.3487	0.3634	0.0147	144.37	141.91	2.46

Arm	Nod	Mag. Volt.	Mag. Volt.	Error de la	Ang. volt	Ang. Volt.	Error del ang.
		estim.	flujos	Mag.	estim.	Flujos	
	1	0.0647	0.0618	0.0029	11.698	12.089	0.391
	2	0.0646	0.0637	0.0009	9.7105	9.6918	0.0187
	3	0.0593	0.0593	0	-18.94	-18.47	0.47
	4	0.0751	0.0759	0.0008	23.586	23.704	0.118
	5	0.0756	0.0758	0.0002	18.735	19.089	0.354
	6	0.0669	0.0693	0.0024	19.314	19.358	0.044
7	7	0.1004	0.1044	0.004	79.916	77.528	2.388
1	8	0.2521	0.251	0.0011	141.69	141.09	0.6
	9	0.1683	0.1699	0.0016	37.888	37.997	0.109
	10	0.1431	0.1484	0.0053	35.395	34.17	1.225
	11	0.105	0.1079	0.0029	29.193	28.335	0.858
	12	0.0738	0.0734	0.0004	15.037	14.547	0.49
	13	0.0794	0.0785	0.0009	16.284	15.73	0.554
	14	0.1177	0.1209	0.0032	23.936	23.022	0.914
	1	0.0103	0.0106	0.0003	-16.55	-12.54	4.01
	2	0.0098	0.0098	0	-14.62	-14.45	0.17
	3	0.0053	0.0057	0.0004	-46.04	-41.01	5.03
	4	0.0047	0.0050	0.0003	13.235	12.539	0.696
	5	0.0078	0.0085	0.0007	-7.298	-3.236	4.062
	6	0.0151	0.0151	0	-8.757	-9.04	0.283
11	7	0.0426	0.0442	0.0016	159.43	159.62	0.19
11	8	0.2253	0.2357	0.0104	169.51	169.5	0.01
	9	0.0518	0.0533	0.0015	6.4521	6.1684	0.2837
	10	0.0433	0.0447	0.0014	2.7242	2.6555	0.0687
	11	0.0283	0.0295	0.0012	-1.507	-1.613	0.106
	12	0.0145	0.0161	0.0016	-14.66	-14.46	0.2
	13	0.016	0.0179	0.0019	-13.61	-13.43	0.18
	14	0.0315	0.033	0.0015	-6.862	-/.131	0.269
	1	0.0084	0.0084	0	96.771	95.643	1.128
	2	0.0072	0.0073	0.0001	94.217	94.1	0.117
	3	0.0033	0.0031	0.0002	/0.991	69.828	1.163
	4	0.001/	0.0016	0.0001	168.11	1/0.85	2.74
	5	0.0041	0.0039	0.0002	110.69	109.57	1.12
13	0	0.006	0.0061	0.0001	84.629	84.544	0.085
	/	0.0368	0.037	0.0002	-96.95	-96.94	0.01
	8	0.1037	0.1623	0.0014	-93.89	-93.89	0 162
	9	0.0210	0.022	0.0004	95.108	94.940	0.102
	10	0.0182	0.0103	0.0001	91.040 99 707	91./1/	0.071
	11	0.0119	0.012	0.0001	00./0/	00.002 78 452	0.703
	12	0.0002	0.0003	0.0001	10.702 70 707	78 902	0.3
	13	0.0008	0.0071	0.0003	17.202	82 867	0.011

Arm	Nod	Mag.	Mag.	Error	Ang.	Ang.	Error
		Volt.	Volt.	de la	volt	Volt.	del ang.
		estim.	flujos	Mag.	estim.	Flujos	
	1	0.0117	0.0121	0.0004	89.252	89.375	0.123
	2	0.0086	0.0087	0.0001	88.697	88.697	0
	3	0.0009	0.0009	0	-156.95	-159	2.05
	4	0.0088	0.009	0.0002	-95.8	-95.74	0.14
	5	0.0041	0.0042	0.0001	-102.3	-102.6	0.3
	6	0.0017	0.0016	0.0001	92.407	92.646	0.239
	7	0.0482	0.05	0.0018	-88.44	-88.45	0.01
17	8	0.01855	0.1854	0.0001	-87.66	-87.66	0
17	9	0.0126	0.0131	0.0005	95.918	95.92	0.004
	10	0.0101	0.0104	0.0003	93.343	93.341	0.002
	11	0.0057	0.0059	0.0002	91.908	91.942	0.034
	12	0.002	0.002	0	84.832	85.053	0.221
	13	0.00253	0.0026	0.0007	84.566	84.734	0.168
	14	0.0068	0.007	0.0002	86.481	86.525	0.044
	1	0.0125	0.0127	0.0002	173.45	172.22	1.23
	2	0.0083	0.0079	0.0004	172.53	173.21	0.68
	3	0.0041	0.0043	0.0002	-55.64	-57.59	1.95
	4	0.013	0.0131	0.0001	-6.357	-6.294	0.063
	5	0.0097	0.01	0.0003	-6.949	-8.299	1.35
	6	0.0015	0.0015	0	-25.36	-25.45	0.09
10	7	0.0317	0.0321	0.0004	7.0341	6.8693	0.1648
1)	8	0.1075	0.1102	0.0027	8.3873	8.3377	0.0496
	9	0.0065	0.0065	0	-171.4	-171.4	0
	10	0.0048	0.0049	0.0001	-171.9	-172.1	0.2
	11	0.0018	0.0018	0	-162.2	-160.6	1.6
	12	0.0008	0.0009	0.0001	-38.03	-39.67	1.64
	13	0.0005	0.0006	0.0001	-62.78	-59.032	3.748
	14	0.0029	0.0029	0	-175.25	-174.7	0.55
	1	0.01	0.0099	0.0001	17.475	17.688	0.213
	2	0.0037	0.0045	0.0008	33.093	34.562	0.469
	3	0.0092	0.0089	0.0003	116.72	117	0.28
	4	0.0127	0.0131	0.0004	-147.8	-147.8	0
	5	0.0198	0.0201	0.0003	-150.5	-150.1	0.4
	6	0.0065	0.0065	0	-159.4	-159.3	0.1
23	7	0.0454	0.0447	0.0007	11.823	11.779	0.044
23	8	0.1725	0.1718	0.0007	13.086	13.074	0.012
	9	0.0047	0.0046	0.0001	-167.9	-167.9	0
	10	0.0046	0.0046	0	-168.3	-168.3	0
	11	0.0053	0.0053	0	-164.3	-164.2	0.1
	12	0.0053	0.0054	0.0001	-164.6	-164.5	0.1
	13	0.0051	0.0052	0.0001	-165.2	-165.3	0.1
	14	0.0039	0.0039	0	-173.2	-173.2	0

Arm	Nod	Mag. Volt.	Mag. Volt.	Error de la	Ang. volt	Ang. Volt.	Error del ang.
		estim.	flujos	Mag.	estim.	Flujos	
	1	0.0015	0.0015	0	108.93	108.51	0.42
	2	0.0006	0.0006	0	128.18	129	0.82
	3	0.001	0.0011	0.0001	177.34	176.8	0.54
	4	0.0018	0.0018	0	-57.04	-56.88	0.16
	5	0.0044	0.0045	0.0001	-62.04	-61.97	0.07
	6	0.0015	0.0015	0	-69.45	-69.4	0.05
25	7	0.0153	0.0156	0.0003	111.57	111.57	0
25	8	0.0597	0.0573	0.0024	111.93	111.93	0
	9	0.0014	0.0014	0	-67.14	-67.15	0.01
	10	0.0013	0.0013	0	-69.82	-69.79	0.03
	11	0.0014	0.0014	0	-70.74	-70.61	0.13
	12	0.0013	0.0013	0	-74.14	-73.93	0.21
	13	0.0013	0.0013	0	-74.37	-74.23	0.14
	14	0.0011	0.0011	0	-76.34	-76.2	0.14
	1	0.0021	0.002	0.0001	108.99	106.63	2.36
	2	0.0013	0.0011	0.0002	129.35	133.62	4.27
	3	0.0007	0.0008	0.0001	-49.62	-47.69	2.07
	4	0.0007	0.0009	0.0002	83.842	84.02	0.538
	5	0.011	0.0114	0.0004	-65.11	-65.1	0.01
	6	0.004	0.0039	0.0001	-70.74	-70.76	0.02
20	7	0.0567	0.0588	0.0021	114.87	114.87	0
49	8	0.2054	0.2078	0.0024	115.01	115.01	0
	9	0.0037	0.0039	0.0002	-64.13	-64.14	0.01
	10	0.0034	0.0036	0.0002	-67.34	-67.3	0.04
	11	0.0035	0.0036	0.0001	-70.14	-70.01	0.13
	12	0.0033	0.0033	0	-74.77	-74.54	0.23
	13	0.0033	0.0032	0.0001	-74.78	-74.56	0.22
	14	0.0028	0.0028	0	-73.91	-73.7	0.21

4.4 ESTIMACIÓN DE UN SISTEMA DE 14 NODOS CON DOS FUENTES DE ARMÓNICAS

Por último se probará la eficiencia de los estimadores propuestos con dos fuentes armónicas. La primer fuente armónica es el Compensador Estático de Vars del caso anterior conectado en el nodo 8. La segunda fuente es un horno de arco eléctrico conectado en el nodo 12; los datos de este se tomaron de el Estándar IEEE 519-1992[28] y de los datos dados por un fabricante en la internet [32]. Todos los datos de las fuentes y el sistema de prueba se encuentran en el Apéndice A de este trabajo. El sistema a probar es el mismo de la figura 4.2.

Nod	%THD
1	0.175988
2	0.183639
3	0.200283
4	0.24094
5	0.22624
6	0.206232
7	0.523782
8	0.864138
9	0.470795
10	0.418126
11	0.309221
12	0.229439
13	0.248031
14	0.364133

Tabla 4.34 THD de los voltajes, con error en las mediciones, por el método deNguyen[19] para el sistema de 14 nodos

Los voltajes armónicos empleados como mediciones para llevar a cabo la estimación se obtuvieron de un programa desarrollado en FORTRAN 90 que obtiene los flujos armónicos por el método de inyecciones de corriente. Estos voltajes se encuentran en la tabla 4.35.

El porcentaje de corriente armónica inyectada por el Compensador Estático de Vars está dado en la tabla 4.19, mientras que el del horno de arco está en la tabla 4.36. La corriente armónica inyectada por el horno de arco fue tomado del Estándar IEEE 519-1992[28].

Cabe mencionar que el horno de arco tiene dos formas de funcionamiento, la primera es al inicio de la fundición, también conocida como arco activo, y la segunda es el refinamiento o arco estable. Para este caso se consideró que el horno de arco se encuentra con el arco activo.

4.3.1 Estimación De Un Sistema De 14 Nodos Con Dos Fuentes De Armónicas Sin Error En Mediciones Por El Método De Heydt[15]

Se usó el sistema de pruebas de la figura 4.2, del cual se desconoce la ubicación de las fuentes de armónicas. Las mediciones que se emplearon para llevar a cabo la

estimación de estado usando el método de Heydt [15] no tienen error y se encuentran en la tabla 4.37.

V/h	2	3	4	5	7	11	13	17	19	23	25	29
$ V ^{1}$	0.4119	0.376	0.1918	0.2704	0.2414	0.0106	0.0084	0.0121	0.0127	0.0099	0.0015	0.002
θ^1	39.54	30.984	18.825	29.429	-25.6	-12.54	95.643	89.375	172.22	17.688	105.51	106.63
$ V ^{2}$	0.4577	0.412	0.2076	0.2858	0.2534	0.0098	0.0073	0.0087	0.0079	0.0045	0.0006	0.0011
θ^2	35.798	27.141	14.932	25.282	-29.56	-14.45	94.1	88.697	173.21	34.562	129	133.62
$ V ^{3}$	0.6936	0.5693	0.2606	0.3185	0.2499	0.0057	0.0031	0.0009	0.0043	0.0089	0.0011	0.0008
θ^3	13.254	0.7867	-14.13	-6.409	-61.62	-41.01	69.828	-159	-57.59	116.96	176.8	-47.69
$ V ^{4}$	0.6091	0.5596	0.2849	0.3719	0.3297	0.005	0.0016	0.009	0.0131	0.0131	0.0018	0.0009
θ^4	40.803	33.532	21.931	30.99	-22.56	12.539	170.85	-95.74	-6.294	-147.8	-56.88	84.02
$ V ^{5}$	0.5912	0.5433	0.2729	0.3844	0.2855	0.0085	0.0039	0.0042	0.01	0.0201	0.0045	0.0114
θ^5	45.613	39.035	28.009	39.761	-12.93	-3.236	109.57	-102.6	-8.299	-150.1	-61.97	-65.1
$ V ^{6}$	0.9271	0.9152	0.4539	0.8402	0.5329	0.0151	0.0061	0.0016	0.0015	0.0065	0.0015	0.0039
θ^{6}	80.957	78.049	73.09	82.421	78.967	-9.04	84.544	92.646	-25.45	-159.3	-69.4	-70.76
$ V ^{7}$	0.751	0.7583	0.4165	0.3953	0.5201	0.0442	0.037	0.05	0.0321	0.0447	0.0156	0.0588
θ^7	51.864	43.66	30.245	25.374	-21.97	159.62	-96.94	-88.45	6.869	11.779	111.57	114.87
$ V ^{8}$	0.751	0.7583	0.4165	0.2741	0.2987	0.2357	0.1623	0.1854	0.1102	0.1718	0.0573	0.2078
θ^8	51.864	53.66	30.245	-57.23	-27.7	169.5	-93.89	-87.66	8.3377	13.074	111.93	115.01
V ⁹	0.8339	0.869	0.4878	0.6509	0.7597	0.0533	0.022	0.0131	0.0065	0.0046	0.0014	0.0039
θ^9	56.092	47.075	32.791	38.782	-20.43	6.1684	94.946	95.92	-171.4	-167.9	-67.15	-64.14
$ V ^{10}$	0.8367	0.8549	0.4623	0.6445	0.6055	0.0447	0.0183	0.0104	0.0049	0.0046	0.0013	0.0036
θ^{10}	59.875	51.332	37.535	45.86	-14.1	2.6555	91.717	93.341	-172.1	-168.3	-69.79	-67.3
$ V ^{11}$	0.8662	0.8596	0.435	0.7002	0.3888	0.0295	0.012	0.0059	0.0018	0.0053	0.0014	0.0036
θ^{11}	70.283	64.245	53.975	65.372	26.324	-1.613	88.602	91.942	-160.6	-164.2	-70.61	-70
$ V ^{12}$	1.9347	1.9578	1.0098	1.9852	1.6727	0.0161	0.0063	0.002	0.0009	0.0054	0.0013	0.0033
$ heta^{12}$	87.03	88.535	88.513	94.159	97.802	-14.61	78.452	85.053	-39.67	-164.5	-73.93	-74.54
$ V ^{13}$	1.2305	1.2237	0.609	1.1487	0.7851	0.0179	0.0071	0.0026	0.0006	0.0052	0.0013	0.0032
θ^{13}	82.25	80.159	76.28	84.46	84.387	-13.43	78.893	84.734	-59.03	-165.3	-74.23	-76.56
$ V ^{14}$	1.024	1.008	0.506	0.7905	0.4476	0.033	0.0132	0.007	0.0029	0.0039	0.0011	0.0028
θ^{14}	65.26	58.32	46.996	57.331	14.754	-7.131	82.867	86.525	-174.7	-173.2	-76.2	-73.7

Tabla 4.35 Voltajes armónicos del sistema de 14 nodos con dos fuentes armónicas

 Tabla 4.36 Corriente Armónica del Horno de Arco (arco activo) [28]

Armónica	% de la corriente fundamental
2	7.7
3	5.8
4	2.5
5	4.1
7	3.1

La tabla 4.38 contiene las corrientes armónicas estimadas para este caso. Como se puede ver, los únicos nodos con corriente armónica son 8 y 12, por lo que se han detectado dos fuentes de armónicas en estos nodos.

Capítulo 4

	el sistema de 14 nodos con dos juentes de armonicas											
Med\h	2	3	4	5	7	11	13	17	19	23	25	29
$ V ^2$	0.4577	0.412	0.2076	0.2858	0.2534	0.0098	0.0073	0.0087	0.0079	0.0045	0.0006	0.0011
Θ^2	35.798	27.141	14.932	25.282	-29.56	-14.45	94.1	88.697	173.21	34.562	129	133.62
$ \mathbf{V} ^3$	0.6936	0.5693	0.2606	0.3185	0.2499	0.0057	0.0031	0.0009	0.0043	0.0089	0.0011	0.0008
Θ^3	13.254	0.7867	-14.13	-6.409	-61.62	-41.01	69.828	-159	-57.59	116.96	176.8	-47.69
$ \mathbf{V} ^4$	0.6091	0.5596	0.2849	0.3719	0.3297	0.005	0.0016	0.009	0.0131	0.0131	0.0018	0.0009
Θ^4	40.803	33.532	21.931	30.99	-22.56	12.539	170.85	-95.74	-6.294	-147.8	-56.88	84.02
V ⁵	0.5912	0.5433	0.2729	0.3844	0.2855	0.0085	0.0039	0.0042	0.01	0.0201	0.0045	0.0114
Θ	45.613	39.035	28.009	39.761	-12.93	-3.236	109.57	-102.6	-8.299	-150.1	-61.97	-65.1
V ⁶	0.9271	0.9152	0.4539	0.8402	0.5329	0.0151	0.0061	0.0016	0.0015	0.0065	0.0015	0.0039
Θ°	80.957	78.049	73.09	82.421	78.967	-9.04	84.544	92.646	-25.45	-159.3	-69.4	-70.76
$ \mathbf{V} '$	0.751	0.7583	0.4165	0.3953	0.5201	0.0442	0.037	0.05	0.0321	0.0447	0.0156	0.0588
Θ'_{10}	51.864	43.66	30.245	25.374	-21.97	159.62	-96.94	-88.45	6.869	11.779	111.57	114.87
V ¹⁰	0.8367	0.8549	0.4623	0.6445	0.6055	0.0447	0.0183	0.0104	0.0049	0.0046	0.0013	0.0036
Θ_{10}^{10}	59.875	51.332	37.535	45.86	-14.1	2.6555	91.717	93.341	-172.1	-168.3	-69.79	-67.3
$ \mathbf{V} ^{\Pi}$	0.8662	0.8596	0.435	0.7002	0.3888	0.0295	0.012	0.0059	0.0018	0.0053	0.0014	0.0036
Θ_{12}^{11}	70.283	64.245	53.975	65.372	26.324	-1.613	88.602	91.942	-160.6	-164.2	-70.61	-70
$ V ^{13}$	1.2305	1.2237	0.609	1.1487	0.7851	0.0179	0.0071	0.0026	0.0006	0.0052	0.0013	0.0032
Θ^{13}	82.25	80.159	76.28	84.46	84.387	-13.43	78.893	84.734	-59.03	-165.3	-74.23	-76.56
$ V ^{14}$	1.024	1.008	0.506	0.7905	0.4476	0.033	0.0132	0.007	0.0029	0.0039	0.0011	0.0028
Θ^{14}	65.26	58.32	46.996	57.331	14.754	-7.131	82.867	86.525	-174.7	-173.2	-76.2	-73.7
$ \mathbf{I} ^2$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I ⁴	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I ³	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
αັ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I ⁶	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α°_	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ \mathbf{I} '$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α ⁷	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ {\bf I} ^{10}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{10}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ I ^{11}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{11}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ I ^{12}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{12}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ I ^{13}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{13}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ I ^{14}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{14}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Tabla 4.37 Mediciones para la estimación por el método de Heydt [15], sin error parael sistema de 14 nodos con dos fuentes de armónicas

En las tablas 4.39 y 4.40 se muestran las comparaciones entre las corrientes que introducen las fuentes armónicas al sistema, contra las estimadas, mismas que son exactas.

La tabla 4.41 enlista los voltajes armónicos calculados con la expresión (3.8), empleando como corrientes armónicas las obtenidas por el estimador. Como se ve en esta tabla, los voltajes armónicos son exactos.

Arm.	Nodo	Mag. de Cor <u>rient</u> e	Ang. de la Corriente
	1	0	-53.07695
2	8	0	153.2088
	9	0	144.5416
	12	3.37811	28.28
	1	0	-163.8678
3	8	0	161.2047
	9	0	55.19055
	12	2.54455	28.28005
	1	0	82 94823
4	8	0	-55 52957
•	9	0	136.0036
	12	1 00670	28 27007
	12	1.07077	121.0606
5		0 5 1 2 1 2	121.9090
3	0	0.31213	132.4301
	9	0	120.0407
	12	1./98/4	28.28
-	Ι	0	59.32584
7	8	0.18238	75.64007
	9	0	-82.18047
	12	1.36002	28.28
	1	0	97.51796
11	8	0.09922	81.76012
	9	0	68.8297
	12	0	97.79975
	1	0	-62.66551
13	8	0.05472	177.01
	9	0	-6.44789
	12	0	-170.6635
	1	0	14.81686
17	8	0.04523	177.37
	9	0	173.0838
	12	0	3.2976
	1	0	-91.15543
	8	0.02335	-81.06
19	9	0	-80.64646
	12	0	-8.02799
	1	0	132.6577
	8	0.03137	-76.47002
23	9	0	109 3095
	12	Ő	-65 53779
	12	0	44 54401
	r R	0 00018	77.J7701 22.05080
25	0	0.00940 A	160 8819
	9 10	0	-100.0040
	12	0	-130.1014
		U 0.02010	19.41008
29	8	0.02918	25.06001
	9	0	23.03951
	12	0	5.02619

Tabla 4.38 Corrientes armónicas estimadas, sin error en las mediciones, por el métodode Heydt [15] para el sistema de 14 nodos con dos fuentes armónicas

14 nouos										
Armónica	Mag. de Corrient	Mag. de Corrient	Error de la mag.	Ang. de Corrient	Ang. de Corrient	Error del				
	estimada	real		estimada	real	Ang.				
5	0.51213	0.51213	0	152.4301	152.43	0.0001				
7	0.18238	0.18238	0	75.64007	75.64	0.00007				
11	0.0992	0.0992	0	81.76012	81.76	0.00012				
13	0.05472	0.05471	0.00002	177.01	177.01	0				
17	0.04523	0.04523	0	-177.37	-177.37	0				
19	0.02335	0.02335	0	-81.06	-81.06	0				
23	0.03137	0.03137	0	-76.47002	-76.47	0.00002				
25	0.00948	0.00948	0	22.05989	22.06	0.00011				
29	0.02918	0.02918	0	25.06001	25.06	0.00001				

Tabla 4.39 Comparación de la corriente del Compensador Estático de Vars contra los estimados, sin error en las mediciones, por el método de Heydt [15] para el sistema de 14 nodos

Tabla 4.40 Comparación de la corriente del Horno de arco contra los estimados, sin error en las mediciones, por el método de Heydt [15] para el sistema de 14 nodos

Armónica	Mag. de Corrient estimada	Mag. de Corrient real	Error de la mag.	Ang. de Corrient estimada	Ang. de Corrient real	Error del Ang.
2	3.37811	3.37811	0	28.28	28.28	0
3	2.54455	2.54455	0	28.28005	28.28	0.00005
4	1.09679	1.09679	0	28.27997	28.28	0.00003
5	1.79874	1.79874	0	28.28	28.28	0
7	1.36002	1.36002	0	28.28	28.28	0

La tabla 4.42 contiene la Distorsión Armónica Total del Voltaje en cada nodo, en ella se observa que no es posible identificar la ubicación de las fuentes armónicas empleando este criterio. Se ve que existen varios nodos que exceden el 1.5% del THD permitido por el Estándar IEEE 519-1992, pero debido a que se tienen dos fuentes armónicas, es necesario saber cuál de ellas excede este nivel, por ello es necesario realizar un estudio de flujos armónicos para cada fuente, para conocer que usuario debe ser sancionado.

El método propuesto por Heydt en [15] ha dado resultados exactos para los sistemas de 14; en el sistema de 5 nodos los resultados no fueron los esperados.

	Nod	Maa	Juente Mag	Error	Δng	Ana	Frror
A 19100	1100	Mag. Volt	Walt	do la	Allg. volt	Ang. Volt	dol ana
AIII		vou. ostim	vou. fluios	ue iu Maa	vou østim	vou. Fluios	uei ung.
	1	0 / 1 1 0	0.4118	0.0001	30.54	30 5/	0
	2	0.4119	0.4118	0.0001	35 700	35 708	0.001
	2	0.4377	0.4377	0	13 254	13 254	0.001
		0.0930	0.0930	0	10.204	10.204	0
	5	0.0071	0.5012	0	40.003	40.003	0
	6	0.9712	0.9272	0 0001	40.015 80.057	40.015 80.057	0
	7	0.751	0.7272	0.0001	51 865	51 864	0.001
2	8	0.751	0.751	0	51.865	51 864	0.001
	9	0.8339	0.8339	0	56 092	56 092	0.001
	10	0.8367	0.8367	0	59.875	59 875	0
	11	0.8662	0.8662	0	70 283	70 283	0
	12	1 9347	1 9347	0	87.03	87.03	0
	13	1.2305	1.2305	0	82.25	82.25	0
	14	1.2303	1.2305	0	65.26	65.26	0
	1	0.376	0.376	0	30 984	30 984	0
	2	0.412	0.412	Ő	27 141	27 141	Ő
	3	0.5693	0.5693	0	0.7869	0.7867	0.0002
	4	0.5596	0.5596	0	33.532	33.532	0
	5	0.5433	0.5433	0	39.035	39.035	0
	6	0.9152	0.9152	0	78.049	78.049	Ő
3	7	0.7583	0.7583	0	43.66	43.66	0
	8	0.7583	0.7583	0	43.66	43.66	0
	9	0.869	0.869	0	47.076	47.075	0.001
	10	0.8549	0.8549	0	51.333	51.331	0.002
	11	0.8596	0.86	0.004	64.245	64.245	0
	12	1.9578	1.9578	0	88.535	88.535	0
	13	1.2237	1.2237	0	80.159	80.159	0
	14	1.0084	1.0084	0	58.32	58.32	0
	1	0.1918	0.1918	0	18.825	18.825	0
	2	0.2076	0.2076	0	14.932	14.932	0
	3	0.2606	0.2606	0	-14.13	-14.13	0
	4	0.2849	0.2849	0	21.931	21.931	0
	5	0.2729	0.2729	0	28.009	29.009	0
	6	0.4539	0.4539	0	73.09	73.09	0
1	7	0.4165	0.4165	0	30.245	30.245	0
4	8	0.4165	0.4165	0	30.245	30.245	0
	9	0.4877	0.4877	0	32.791	32.791	0
	10	0.4623	0.4623	0	37.535	37.535	0
	11	0.435	0.435	0	53.975	53.975	0
	12	1.0098	1.0098	0	88.413	88.413	0
	13	0.609	0.609	0	76.279	76.279	0
	14	0.5058	0.5058	0	46.996	46.996	0

Tabla 4.41 Comparación de los voltajes armónicos contra los estimados, sin error en las mediciones, por el método de Heydt[15] para el sistema de 14 nodos con dos fuentes armónicas

	Nod	Mag.	Mag.	Error	Ang.	Ang.	Error
Arm		Volt.	Volt.	de la	volt	Volt.	del ang.
		estim.	flujos	Mag.	estim.	Flujos	
	1	0.2704	0.2704	0	29.429	29.429	0
	2	0.2858	0.2858	0	25.282	25.282	0
	3	0.3185	0.3185	0	-6.4085	-6.409	0.0005
	4	0.3719	0.3719	0	30.99	30.989	0.001
	5	0.3844	0.3844	0	39.761	39.761	0
	6	0.8402	0.8402	0	82.421	84.421	0
5	7	0.3953	0.3953	0	25.374	25.374	0
0	8	0.2741	0.2741	0	-57.23	-57.23	0
	9	0.6509	0.6509	0	38.752	38.752	0
	10	0.6445	0.6445	0	45.86	45.86	0
	11	0.7002	0.7002	0	65.372	65.372	0
	12	1.9852	1.9852	0	94.159	94.159	0
	13	1.1487	1.1487	0	84.46	84.46	0
	14	0.7905	0.7905	0	57.331	57.331	0
	1	0.2414	0.2414	0	-25.6	-25.6	0
	2	0.2534	0.2534	0	-29.56	-29.56	0
	3	0.2499	0.2499	0	-61.62	-61.62	0
	4	0.3297	0.3297	0	-22.56	-22.56	0
	5	0.2855	0.2855	0	-12.93	-12.93	0
	6	0.5329	0.5329	0	78.967	78.967	0
7	7	0.5201	0.5201	0	-21.97	-21.97	0
/	8	0.2987	0.2987	0	-27.69	-27.69	0
	9	0.7597	0.7597	0	-20.43	-20.432	0.002
	10	0.6055	0.6055	0	-14.1	-14.1	0
	11	0.3888	0.3888	0	26.324	26.324	0
	12	1.6727	1.6727	0	97.802	97.802	0
	13	0.7851	0.7851	0	84.387	84.387	0
	14	0.4476	0.4476	0	14.754	14.754	0
	1	0.0106	0.0106	0	-12.53	-12.54	0.01
	2	0.0098	0.0098	0	-14.45	-14.45	0
	3	0.0057	0.0057	0	-41	-41.01	0.01
	4	0.005	0.005	0	12.452	12.539	0.087
	5	0.0085	0.0085	0	-3.234	-3.236	0.002
	6	0.0151	0.0151	0	-9.04	-9.04	0
11	7	0.0442	0.0442	0	159.62	159.62	0
11	8	0.2357	0.2357	0	169.5	169.5	0
	9	0.0533	0.0533	0	6.1684	6.1684	0
	10	0.0447	0.0447	0	2.6554	2.6555	0.0001
	11	0.0295	0.0295	0	-1.613	-1.613	0
	12	0.0161	0.0161	0	-14.46	-14.46	0
	13	0.0179	0.0179	0	-13.43	-13.43	0
	14	0.033	0.033	0	-7.131	-7.131	0

Arm	Nod	Mag.	Mag.	Error	Ang.	Ang.	Error
		Volt.	Volt.	de la	volt	Volt.	del ang.
		estim.	flujos	Mag.	estim.	Flujos	
	1	0.0084	0.0084	0	95.644	95.643	0.001
	2	0.0073	0.0073	0	94.102	94.1	0.002
	3	0.0031	0.0031	0	69.826	69.828	0.002
	4	0.0016	0.0016	0	170.86	170.85	0.01
	5	0.0039	0.0039	0	109.57	109.57	0
	6	0.0061	0.0061	0	84.544	84.544	0
12	7	0.037	0.037	0	-96.94	-96.94	0
15	8	0.1623	0.1623	0	-93.89	-93.89	0
	9	0.022	0.022	0	94.946	94.946	0
	10	0.0183	0.0183	0	91.717	91.717	0
	11	0.012	0.012	0	88.602	88.602	0
	12	0.0063	0.0063	0	78.452	78.452	0
	13	0.0071	0.0071	0	78.894	78.893	0.001
	14	0.0132	0.0132	0	82.867	82.867	0
	1	0.0121	0.0121	0	89.375	89.375	0
	2	0.0087	0.0087	0	88.697	88.697	0
	3	0.0009	0.0009	0	-159	-159	0
	4	0.009	0.009	0	-95.74	-95.74	0
	5	0.0042	0.0042	0	-102.6	-102.6	0
	6	0.0016	0.0016	0	92.646	92.646	0
17	7	0.05	0.05	0	-88.45	-88.45	0
1/	8	0.1854	0.1854	0	-87.66	-87.66	0
	9	0.0131	0.0131	0	95.92	95.92	0
	10	0.0104	0.0104	0	93.341	93.341	0
	11	0.0059	0.0059	0	91.452	91.942	0.49
	12	0.002	0.002	0	85.053	85.053	0
	13	0.0026	0.0026	0	84.734	84.734	0
	14	0.007	0.007	0	86.525	86.525	0
	1	0.0127	0.0127	0	172.22	172.22	0
	2	0.0079	0.0079	0	173.21	173.21	0
	3	0.0043	0.0043	0	-57.59	-57.59	0
	4	0.0131	0.0131	0	-6.296	-6.294	0
	5	0.01	0.01	0	-8.301	-8.299	0.002
	6	0.0015	0.0015	0	-25.46	-25.45	0.01
10	7	0.0321	0.0321	0	6.8692	6.8693	0.0001
19	8	0.1102	0.1102	0	8.3376	8.3377	0.0001
	9	0.0065	0.0065	0	-171.4	-171.4	0
	10	0.0049	0.0049	0	-172.06	-172.06	0
	11	0.0018	0.0018	0	-160.6	-160.6	0
	12	0.0009	0.0009	0	-39.69	-39.67	0
	13	0.0006	0.0006	0	-59.05	-59.03	0
	14	0.0029	0.0029	0	-174.7	-174.7	0

Arm	Nod	Mag. Volt.	Mag. Volt.	Error de la	Ang. volt	Ang. Volt.	Error del ang.
		estim.	flujos	Mag.	estim.	Flujos	
	1	0.0099	0.0099	0	17.69	17.688	0.002
	2	0.0045	0.0045	0	34.566	34.562	0.004
	3	0.0089	0.0089	0	116.95	117	0.05
	4	0.0131	0.0131	0	-147.8	-147.8	0
	5	0.0201	0.0201	0	-150	-150.1	0.1
	6	0.0065	0.0065	0	-159.3	-159.3	0
22	7	0.0447	0.0447	0	11.779	11.779	0
23	8	0.1718	0.1718	0	13.074	13.074	0
	9	0.0046	0.0046	0	-167.9	-167.9	0
	10	0.0046	0.0046	0	-168.3	-168.3	0
	11	0.0053	0.0053	0	-164.2	-164.2	0
	12	0.0054	0.0054	0	-164.5	-164.5	0
	13	0.0052	0.0052	0	-165.2	-165.3	0.1
	14	0.0039	0.0039	0	-173.2	-173.2	0
	1	0.0015	0.0015	0	108.51	108.51	0
	2	0.0006	0.0006	0	129	129	0
	3	0.0011	0.0011	0	176.78	176.8	0.02
	4	0.0018	0.0018	0	-56.87	-56.88	0.01
	5	0.0045	0.0045	0	-67.97	-61.97	0
	6	0.0015	0.0015	0	-69.4	-69.4	0
25	7	0.0156	0.0156	0	111.57	111.57	0
23	8	0.0573	0.0573	0	111.93	111.93	0
	9	0.0014	0.0014	0	-67.15	-67.15	0
	10	0.0013	0.0013	0	-69.79	-69.79	0
	11	0.0014	0.0014	0	-70.61	-70.61	0
	12	0.0013	0.0013	0	-73.93	-73.93	0
	13	0.0013	0.0013	0	-74.23	-74.23	0
	14	0.0011	0.0011	0	-76.2	-76.2	0
	1	0.002	0.002	0	106.63	106.63	0
	2	0.0011	0.0011	0	133.62	133.62	0
	3	0.0008	0.0008	0	-47.66	-47.69	0.03
	4	0.0009	0.0009	0	84.007	84.02	0.013
	5	0.0114	0.0114	0	-65.1	-65.1	0
	6	0.0039	0.0039	0	-70.76	-70.76	0
29	7	0.0588	0.0588	0	114.87	114.87	0
-	8	0.2078	0.2078	0	115.01	115.01	0
	9	0.0039	0.0039	0	-64.14	-64.14	0
	10	0.0036	0.0036	0	-67.3	-67.3	0
		0.0036	0.0036	0	-/0.01	-/0.01	0
	12	0.0033	0.0033	0	-74.54	-74.54	0
	13	0.0032	0.0032	0	-74.56	-74.56	0
	14	0.0028	0.0028	0	-73.7	-73.7	0

Nod	%THD
1	0.653428
2	0.721559
3	0.976646
4	0.978786
5	0.942435
6	1.589701
7	1.298473
8	1.270063
9	1.617204
10	1.53281
11	1.465729
12	3.719565
13	2.205231
14	1.747272

Tabla 4.42 THD de los voltajes, sin error en las mediciones, por el método de Heydt[15] para el sistema de 14 nodos

4.3.2 ESTIMACIÓN DE UN SISTEMA DE 14 NODOS CON DOS FUENTES DE Armónicas Sin Error En Mediciones Por El Método De Nguyen [19]

Al igual que en el caso anterior, se realizó la estimación de estado por el método de Nguyen [19] al sistema de 14 nodos de la figura 4.2 para identificar las fuentes de armónicas en este. Para ello se tomaron en cuenta las mediciones sin error mostradas en la tabla 4.43.

En la tabla 4.44 se encuentran las corrientes armónicas obtenidas por el estimador propuesto en [19], donde se puede ver que se han identificado dos fuentes de armónicas en los nodos 8 y 12.

Las tablas 4.45 y 4.46 muestran la comparación entre las corrientes reales y las estimadas. Como se observa en estas tablas, las corrientes armónicas calculadas son exactas.

Med\h	2	3	4	5	7	11	13	17	19	23	25	29
$ \mathbf{V} ^1$	0.4119	0.376	0.1918	0.2704	0.2414	0.0106	0.0084	0.0121	0.0127	0.0099	0.0015	0.002
Θ^1	39.54	30.984	18.825	29.429	-25.6	-12.54	95.643	89.375	172.22	17.688	105.51	106.63
$ \mathbf{V} ^3$	0.6936	0.5693	0.2606	0.3185	0.2499	0.0057	0.0031	0.0009	0.0043	0.0089	0.0011	0.0008
Θ^3	13.254	0.7867	-14.13	-6.409	-61.62	-41.01	69.828	-159	-57.59	116.96	176.8	-47.69
$ \mathbf{V} ^5$	0.5912	0.5433	0.2729	0.3844	0.2855	0.0085	0.0039	0.0042	0.01	0.0201	0.0045	0.0114
Θ^5	45.613	39.035	28.009	39.761	-12.93	-3.236	109.57	-102.6	-8.299	-150.1	-61.97	-65.1
$ \mathbf{V} ^7$	0.751	0.7583	0.4165	0.3953	0.5201	0.0442	0.037	0.05	0.0321	0.0447	0.0156	0.0588
$\mathbf{\Theta}^7$	51.864	43.66	30.245	25.374	-21.97	159.62	-96.94	-88.45	6.869	11.779	111.57	114.87
$ \mathbf{V} ^{8}$	0.751	0.7583	0.4165	0.2741	0.2987	0.2357	0.1623	0.1854	0.1102	0.1718	0.0573	0.2078
Θ^{8}_{10}	51.864	53.66	30.245	-57.23	-27.7	169.5	-93.89	-87.66	8.3377	13.074	111.93	115.01
$ V ^{10}$	0.8367	0.8549	0.4623	0.6445	0.6055	0.0447	0.0183	0.0104	0.0049	0.0046	0.0013	0.0036
Θ_{10}^{10}	59.875	51.332	37.535	45.86	-14.1	2.6555	91.717	93.341	-172.1	-168.3	-69.79	-67.3
$ \mathbf{V} ^{\Pi}$	0.8662	0.8596	0.435	0.7002	0.3888	0.0295	0.012	0.0059	0.0018	0.0053	0.0014	0.0036
Θ_{12}^{11}	70.283	64.245	53.975	65.372	26.324	-1.613	88.602	91.942	-160.6	-164.2	-70.61	-70
$ V ^{12}$	1.9347	1.9578	1.0098	1.9852	1.6727	0.0161	0.0063	0.002	0.0009	0.0054	0.0013	0.0033
Θ^{12}	87.03	88.535	88.513	94.159	97.802	-14.61	78.452	85.053	-39.67	-164.5	-73.93	-74.54
$ V ^{13}$	1.2305	1.2237	0.609	1.1487	0.7851	0.0179	0.0071	0.0026	0.0006	0.0052	0.0013	0.0032
Θ^{13}	82.25	80.159	76.28	84.46	84.387	-13.43	78.893	84.734	-59.03	-165.3	-74.23	-76.56
$ V ^{14}$	1.024	1.008	0.506	0.7905	0.4476	0.033	0.0132	0.007	0.0029	0.0039	0.0011	0.0028
Θ^{14}	65.26	58.32	46.996	57.331	14.754	-7.131	82.867	86.525	-174.7	-173.2	-76.2	-73.7
I ²	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α ²	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I ⁴	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I ⁵	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
αີ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I °	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I ⁹	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α"	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ \mathbf{I} ^{10}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{10}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ \mathbf{I} ^{11}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{11}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ I ^{13}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{13}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ I ^{14}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{14}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Tabla 4.43 Mediciones para la estimación por el método de Nguyen [19], sin error para el sistema de 14 nodos con dos fuentes de armónicas

La tabla 4.47 contiene los voltajes armónicos; los voltajes sombreados se obtuvieron aplicando el estimador, mientras que los demás se obtuvieron con la expresión (3.8). Como se ve en la tabla, los voltajes armónicos estimados y los calculados con (3.8) son exactos.

Arm.	Nodo	Mag. de Corriente	Ang. de la Corriente
	1	0.00001	-87.9786
2	7	0	-112.5726
	8	0	0
	12	3.37811	28.27998
	1	0	-130.2574
3	7	0	-127.4945
	8	0	0
	12	2.54455	28.27993
	1	0	-134.6049
4	7	0	-102.6856
	8	0	0
	12	1.09679	28.28
	1	0	-168.2737
5	7	0	-129.7366
	8	0.51213	152.43
	12	1.79874	28.28
	1	0	154.8379
7	7	0	147.9766
	8	0.18238	75.63998
	12	1.36002	28.28001
	1	0	86.06593
11	7	0	100.9264
	8	0.09922	81.75999
	12	0	83.85068
	1	0	-156.0296
13	7	0	-178.6801
	8	0.05472	177.01
	12	0	-5.69008
	1	0	97.31136
17	7	0	7.21787
	8	0.04523	-177.37
	12	0	0.41832
	1	0	-143.8517
19	7	0	114.4134
	8	0.02335	-81.06001
	12	0	175.7535
	1	0	-32.18983
23	7	0	92.8583
	8	0.03137	-76.47
	12	0	107.9731
		0	48.64992
25	/	0	-152.0384
	8	0.00948	22.06002
	12	0	-148.0714
	1	0	-153.1165
29	7	0	15.02114
- -	8	0.02918	25.06006
	12	0	-163.6525

Tabla 4.44 Corrientes armónicas estimadas, sin error en las mediciones, por el métodode Nguyen [19] para el sistema de 14 nodos con dos fuentes armónicas

Armónica Mag. de Corrient estimada Mag. de Corrient real Error de la mag. estimada Ang. de Corrient estimada Ang. de Corrient real Ang. de Corrient estimada Error de Corrient estimada 5 0.51213 0.51213 0 152.43 152.43 7 0.18238 0.18238 0 75.63998 75.64 0.0 11 0.09922 0.0992 0.00002 81.75999 81.76 0.0 13 0.05472 0.05471 0.00001 177.01 177.01 17 0.04523 0.04523 0 -177.37 -177.37 19 0.02335 0.02335 0 -76.47 -76.47	ue 14 houos										
estimada real estimada real A 5 0.51213 0.51213 0 152.43 152.43 7 0.18238 0.18238 0 75.63998 75.64 0.0 11 0.09922 0.0992 0.00002 81.75999 81.76 0.0 13 0.05472 0.05471 0.00001 177.01 177.01 17 0.04523 0.04523 0 -177.37 -177.37 19 0.02335 0.02335 0 -81.06001 -81.06 0.0 23 0.03137 0 -76.47 -76.47 -76.47	rmónica	Error del									
5 0.51213 0.51213 0 152.43 152.43 7 0.18238 0.18238 0 75.63998 75.64 0.0 11 0.09922 0.0992 0.00002 81.75999 81.76 0.0 13 0.05472 0.05471 0.00001 177.01 177.01 17 0.04523 0.04523 0 -81.06001 -81.06 0.0 23 0.03137 0.03137 0 -76.47 -76.47		Ang.									
70.182380.18238075.6399875.640.0110.099220.09920.0000281.7599981.760.0130.054720.054710.00001177.01177.01170.045230.045230-177.37-177.37190.023350.023350-81.06001-81.060.0230.031370.031370-76.47-76.47	5	0									
110.099220.09920.0000281.7599981.760.0130.054720.054710.00001177.01177.01170.045230.045230-177.37-177.37190.023350.023350-81.06001-81.060.0230.031370.031370-76.47-76.47	7	0.00002									
130.054720.054710.00001177.01177.01170.045230.045230-177.37-177.37190.023350.023350-81.06001-81.060.0230.031370.031370-76.47-76.47	11	0.00001									
170.045230.045230-177.37-177.37190.023350.023350-81.06001-81.060.0230.031370.031370-76.47-76.47	13	0									
19 0.02335 0.02335 0 -81.06001 -81.06 0.0 23 0.03137 0.03137 0 -76.47 -76.47	17	0									
23 0.03137 0.03137 0 -76.47 -76.47	19	0.00001									
	23	0									
25 0.00948 0.00948 0 22.06002 22.06 0.0	25	0.00002									
29 0.02918 0.02918 0 25.06006 25.06 0.0	29	0.00006									

Tabla 4.45 Comparación de la corriente del Compensador Estático de Vars contra los estimados, sin error en las mediciones, por el método de Nguyen [19] para el sistema de 14 nodos

Tabla 4.46 Comparación de la corriente del Horno de arco contra los estimados, sin error <u>en las mediciones</u>, por el método de Nguyen [19] para el sistema de 14 nodos

Armónica	Mag. de Corrient estimada	Mag. de Corrient real	Error de la mag.	Ang. de Corrient estimada	Ang. de Corrient real	Error del Ang.
2	3.37811	3.37811	0	28.27998	28.28	0.00002
3	2.54455	2.54455	0	28.27993	28.28	0.00007
4	1.09679	1.09679	0	28.28	28.28	0
5	1.79873	1.79874	0.00001	28.28	28.28	0
7	1.36002	1.36002	0	28.28001	28.28	0.00001

La tabla 4.48 muestra la Distorsión Armónica Total de cada nodo del sistema. Se nota que varios nodos rebasan el 1.5% de Distorsión Armónica Total permitida por el Estándar IEEE 519-1992, pero este valor esta dado por ambas fuentes armónicas, por lo que es necesario realizar un estudio de flujos armónicos para cada fuente, y si es el caso identificar que fuente merece ser penalizada.

El método propuesto por Nguyen en [19] fue más confiable durante todas las pruebas, el único problema que se presentó es que al realizar la estimación para el sistema de 14 nodos, la matriz de mediciones se volvía singular, por lo que se acomodaron las mediciones de forma que se tuviera mas redundancia estadística y así se pudiera realizar la estimación.

	fuentes armónicas							
	Nod	Mag.	Mag.	Error	Ang.	Ang.	Error	
Arm		Volt.	Volt.	de la	volt	Volt.	del ang.	
		estim.	flujos	Mag.	estim.	Flujos		
	1	0.4119	0.4118	0.0001	39.538	39.54	0.002	
	2	0.4577	0.4577	0	35.799	35.798	0.001	
	3	0.6936	0.6936	0	13.252	13.254	0.002	
	4	0.6091	0.6091	0	40.803	40.803	0	
	5	0.5912	0.5912	0	45.611	45.613	0.002	
	6	0.9271	0.9272	0.0001	80.957	80.957	0	
r	7	0.751	0.751	0	51.863	51.864	0.001	
2	8	0.751	0.751	0	51.863	51.864	0.001	
	9	0.8339	0.8339	0	56.091	56.092	0.001	
	10	0.8367	0.8367	0	59.874	59.875	0.001	
	11	0.8662	0.8662	0	70.283	70.283	0	
	12	1.9347	1.9347	0	87.029	87.03	0.001	
	13	1.2305	1.2305	0	82.25	82.25	0	
	14	1.0239	1.0239	0	65.26	65.26	0	
	1	0.376	0.376	0	30.982	30.984	0.002	
	2	0.412	0.412	0	27.141	27.141	0	
	3	0.5693	0.5693	0	0.7852	0.7867	0.0015	
	4	0.5596	0.5596	0	33.532	33.532	0	
	5	0.5432	0.5433	0.0001	39.034	39.035	0.001	
	6	0.9152	0.9152	0	78.049	78.049	0	
3	7	0.7583	0.7583	0	43.659	43.66	0.001	
	8	0.7583	0.7583	0	46.659	43.66	0.001	
	9	0.869	0.869	0	47.075	47.075	0	
	10	0.8549	0.8549	0	51.332	51.331	0.001	
	11	0.8596	0.86	0.0004	64.245	64.245	0	
	12	1.9578	1.9578	0	88.535	88.535	0	
	13	1.2237	1.2237	0	80.159	80.159	0	
	14	1.0084	1.0084	0	58.319	58.32	0.001	
	1	0.1918	0.1918	0	18.823	18.825	0.002	
	2	0.2076	0.2076	0	14.933	14.932	0.001	
	3	0.2606	0.2606	0	-14.13	-14.13	0	
	4	0.2849	0.2849	0	21.931	21.931	0	
	5	0.2729	0.2729	0	28.008	28.009	0.001	
	6	0.4539	0.4539	0	73.09	73.09	0	
4	7	0.4164	0.4165	0.0001	30.244	30.245	0.001	
4	8	0.4164	0.4165	0.0001	30.244	30.245	0.001	
	9	0.4877	0.4877	0	32.791	32.791	0	
	10	0.4623	0.4623	0	37.535	37.535	0	
	11	0.435	0.435	0	53.975	53.975	0	
	12	1.0098	1.0098	0	88.413	88.413	0	
	13	0.6089	0.609	0.0001	76.28	76.279	0.001	
	14	0.5058	0.5058	0	46.996	46.996	0	

Tabla 4.47 Comparación de los voltajes armónicos contra los estimados, sin error en las mediciones, por el método de Nguyen [19] para el sistema de 14 nodos con dos fuentes armónicas

Arm	Nod	Mag. Volt.	Mag. Volt.	Error de la	Ang. volt	Ang. Volt.	Error del ang.
		estim.	flujos	Mag.	estim.	Flujos	0
	1	0.2704	0.2704	0	29.428	29.429	0.001
	2	0.2858	0.2858	0	25.282	25.282	0
	3	0.3185	0.3185	0	-6.409	-6.409	0
	4	0.3719	0.3719	0	30.989	30.989	0
	5	0.3843	0.3844	0.0001	39.76	39.761	0.001
	6	0.8402	0.8402	0	82.421	82.421	0
-	7	0.3952	0.3953	0.0001	25.374	25.374	0
3	8	0.2741	0.2741	0	-57.23	-57.23	0
	9	0.6509	0.6509	0	38.752	38.752	0
	10	0.6445	0.6445	0	45.86	45.86	0
	11	0.7002	0.7002	0	65.373	65.372	0.001
	12	1.9852	1.9852	0	97.159	94.159	0
	13	1.1487	1.1487	0	84.46	84.46	0
	14	0.7905	0.7905	0	57.332	57.331	0.001
	1	0.2414	0.2414	0	-25.6	-25.6	0
	2	0.2534	0.2534	0	-29.56	-29.56	0
	3	0.2499	0.2499	0	-61.62	-61.62	0
	4	0.3297	0.3297	0	-22.56	-22.56	0
	5	0.2855	0.2855	0	-12.93	-12.93	0
	6	0.5329	0.5329	0	78.967	78.967	0
7	7	0.5201	0.5201	0	-21.97	-21.97	0
1	8	0.2987	0.2987	0	-27.69	-27.69	0
	9	0.7597	0.7597	0	-20.43	-20.43	0
	10	0.6055	0.6055	0	-14.1	-14.1	0
	11	0.3888	0.3888	0	26.325	26.324	0.001
	12	1.6727	1.6727	0	97.802	97.802	0
	13	0.7851	0.7851	0	84.387	84.387	0
	14	0.4476	0.4476	0	14.755	14.754	0.001
	1	0.0106	0.0106	0	-12.53	-12.54	0.01
	2	0.0098	0.0098	0	-14.45	-14.45	0
	3	0.0057	0.0057	0	-41	-41.01	0.01
	4	0.005	0.0050	0	12.539	12.539	0
	5	0.0085	0.0085	0	-3.229	-3.236	0.007
	6	0.0151	0.0151	0	-9.04	-9.04	0
11	7	0.0442	0.0442	0	159.62	159.62	0
11	8	0.2357	0.2357	0	169.5	169.5	0
	9	0.0533	0.0533	0	6.1684	6.1684	0
	10	0.0447	0.0447	0	2.6551	2.6555	0.0004
	11	0.0295	0.0295	0	-1.612	-1.613	0.001
	12	0.0161	0.0161	0	-14.46	-14.46	0
	13	0.0179	0.0179	0	-13.43	-13.43	0
	14	0.033	0.033	0	-7.132	-7.131	0.001

Arm	Nod	Mag. Volt.	Mag. Mag. Error Volt. Volt. de la		Ang. volt	Ang. Volt.	Error del ang.
		estim.	flujos	Mag.	estim.	Flujos	
	1	0.0084	0.0084	0	95.645	95.643	0.002
	2	0.0073	0.0073	0	94.1	94.1	0
	3	0.0031	0.0031	0	69.831	69.828	0.003
	4	0.0016	0.0016	0	170.85	170.85	0
	5	0.0039	0.0039	0	109.57	109.57	0
	6	0.0061	0.0061	0	84.544	84.544	0
13	7	0.037	0.037	0	-96.94	-96.94	0
10	8	0.1623	0.1623	0	-93.89	-93.89	0
	9	0.022	0.022	0	94.946	94.946	0
	10	0.0183	0.0183	0	91.917	91.717	0
	11	0.012	0.012	0	88.602	88.602	0
	12	0.0063	0.0063	0	78.452	78.452	0
	13	0.00/1	0.0071	0	78.894	78.893	0.001
	14	0.0132	0.0132	0	82.867	82.867	0
	1	0.0121	0.0121	0	89.375	89.375	0
	2	0.0087	0.0087	0	88.696	88.697	0.001
	3	0.0009	0.0009	0	-159	-159	0
	4	0.009	0.009	0	-95.74	-95.74	0
	5	0.0042	0.0042	0	-102.6	-102.6	0
	6	0.0016	0.0016	0	92.646	92.646	0
17	7	0.05	0.05	0	-88.45	-88.45	0
	8	0.1854	0.1854	0	-8/.66	-87.66	0
	9	0.0131	0.0131	0	95.92	95.92	0
	10	0.0104	0.0104	0	93.341	93.341	0
	11	0.0059	0.0059	0	91.942	91.942	0
	12	0.002	0.002	0	85.055	85.055	0
	13	0.0020	0.0020	0	04.734 06.535	04.704 96.505	0
	14	0.007	0.007	0	172.22	172.22	0
	1	0.0127	0.0127	0	172.22	172.22	0
	2	0.0079	0.0079	0	57.50	57.50	0
	3	0.0045	0.0045	0	-37.39	-37.39	0
	4	0.0151	0.0151	0	-0.294	-0.294	0.001
	5	0.01	0.01	0	-8.298	-8.299	0.001
	7	0.0013	0.0013	0	-23.43 6 8604	-23.43	0.0001
19	2 2	0.0321	0.0321	0	0.0094 8 2277	0.0095	0.0001
	0	0.0065	0.0065	0	-171 /	-171 /	0
	10	0.0003	0.0005	0	-172.1	-172.1	0
	11	0.0049	0.0049	0	-172.1	-172.1	0
	12	0.0010	0.0010	0	-30.66	-30.67	0.01
	12	0.0009	0.0009	0	-59.00	-59.07	0.01
	14	0.0029	0.0029	0	-174.7	-174.7	0

Arm	Nod	od Mag. Mag. E		Error	Ang.	Ang.	Error	
		Volt.	Volt.	de la	volt	Volt.	del ang.	
		estim.	flujos	Mag.	estim.	Flujos		
	1	0.0099	0.0099	0	17.69	17.688	0.002	
	2	0.0045	0.0045	0	34.561	34.562	0.001	
	3	0.0089	0.0089	0	116.96	117	0.04	
	4	0.0131	0.0131	0	-147.8	-147.8	0	
	5	0.0201	0.0201	0	-150	-150.1	0.1	
	6	0.0065	0.0065	0	-159.3	-159.3	0	
22	7	0.0447	0.0447	0	11.778	11.779	0.001	
23	8	0.1718	0.1718	0	13.074	13.074	0	
	9	0.0046	0.0046	0	-167.9	-167.9	0	
	10	0.0046	0.0046	0	-168.3	-168.3	0	
	11	0.0053	0.0053	0	-164.2	-164.2	0	
	12	0.0054	0.0054	0	-164.5	-164.5	0	
	13	0.0052	0.0052	0	-165.2	-165.3	0.1	
	14	0.0039	0.0039	0	-173.2	-173.2	0	
	1	0.0015	0.0015	0	108.51	108.51	0	
	2	0.0006	0.0006	0	129	129	0	
	3	0.001	0.0011	0.0001	176.8	176.8	0	
	4	0.0018	0.0018	0	-56.88	-56.88	0	
	5	0.0045	0.0045	0	-61.97	-61.97	0	
	6	0.0015	0.0015	0	-69.4	-69.4	0	
25	7	0.0156	0.0156	0	111.57	111.57	0	
23	8	0.0573	0.0573	0	111.93	111.93	0	
	9	0.0014	0.0014	0	-67.15	-67.15	0	
	10	0.0013	0.0013	0	-69.79	-69.79	0	
	11	0.0014	0.0014	0	-70.61	-70.61	0	
	12	0.0013	0.0013	0	-73.93	-73.93	0	
	13	0.0013	0.0013	0	-74.23	-74.23	0	
	14	0.0011	0.0011	0	-76.2	-76.2	0	
	1	0.002	0.002	0	106.64	106.63	0.01	
	2	0.0011	0.0011	0	133.62	133.62	0	
	3	0.0008	0.0008	0	-47.69	-47.69	0	
	4	0.0009	0.0009	0	84.01	84.02	0.01	
	5	0.0114	0.0114	0	-65.1	-65.1	0	
29	6	0.0039	0.0039	0	-70.76	-70.76	0	
	7	0.0588	0.0588	0	114.87	114.87	0	
	8	0.2078	0.2078	0	115.01	115.01	0	
	9	0.0039	0.0039	0	-64.14	-64.14	0	
	10	0.0036	0.0036	0	-67.3	-67.3	0	
		0.0036	0.0036	0	-/0.01	-70.01	0	
	12	0.0033	0.0033	0	-74.54	-74.54	0	
	13	0.0032	0.0032	0	-74.56	-74.56	0	
	14	0.0028	0.0028	0	-73.7	-73.7	0	

Nod	%THD
1	0.653421
2	0.721551
3	0.976636
4	0.978774
5	0.942425
6	1.589686
7	1.298453
8	1.270049
9	1.61718
10	1.532787
11	1.46571
12	3.719549
13	2.205214
14	1.747248

Tabla 4.48 THD de los voltajes, sin error en las mediciones, por el método de Nguyen[19] para el sistema de 14 nodos

4.3.3 ESTIMACIÓN DE UN SISTEMA DE 14 NODOS CON DOS FUENTES DE Armónicas Con Error En Mediciones Por El Método De Nguyen [19]

Se realizó la prueba al sistema de 14 nodos de la figura 4.2, pero ahora, con error en las mediciones. Las fuentes de armónicas se encuentran, como en los casos anteriores, en los nodos 8 y 12, así que se probará si el estimador identifica correctamente la ubicación de las fuentes de armónicas. La tabla 4.49 muestra las mediciones con error que se emplearon para llevar a cabo la estimación. Las mediciones tienen un error del $\pm 5\%$ según el Estándar IEEE 519-1992, y están representadas por números aleatorios con una distribución uniforme.

La tabla 4.50 contiene las corrientes armónicas estimadas con el método de Nguyen [19]. Como se puede observar, es difícil identificar en que nodo se encuentran las fuentes armónicas, ya que los nodos donde no se tienen conectadas dan un valor alto y diferente a cero, esto sucedió en los casos anteriores al afectar las mediciones con un error, las explicaciones son que ambos métodos de estimación son deterministas, además de que el error permitido en el Estándar IEEE 519-1992 para medidores de armónicas es muy grande.

Med\h	2		4	5	7	11	13	17	19	23	25	29
$ \mathbf{V} ^1$	0 4324	0 3914	0 1957	0 2586	0 2388	0.011	0.0083	0.0121	0.0122	0.0096	0.0016	0.0021
Θ^1	39 54	30 984	18 825	29 429	-25.6	-12.54	95 643	89 375	172.22	17 688	108 51	106.63
$ \mathbf{V} ^3$	0.7224	0.5658	0.2625	0.3212	0.2516	0.0059	0.0032	0.0009	0.0041	0.0088	0.0011	0.0008
Θ^3	13.254	0.7867	-14.13	-6.409	-61.62	-41.01	69.828	-159	-57.59	116.96	176.8	-47.69
$ \mathbf{V} ^5$	0.5852	0.5388	0.262	0.3917	0.2827	0.0084	0.0038	0.0041	0.0104	0.0193	0.0047	0.0117
Θ^5	45.613	39.035	28.009	39.761	-12.93	-3.236	109.57	-102.6	-8.299	-150.1	-61.97	-65.1
$ \mathbf{V} ^7$	0.7216	0.7348	0.4101	0.3947	0.5021	0.0439	0.0376	0.0491	0.0309	0.0458	0.0149	0.0583
Θ^7	51.864	43.66	30.245	25.374	-21.97	159.62	-96.94	-88.45	6.8693	11.779	111.57	114.87
$ \mathbf{V} ^{8}$	0.7189	0.7514	0.4	0.277	0.2989	0.23	0.163	0.1929	0.1088	0.177	0.0571	0.2158
Θ^8	51.864	43.66	30.245	-57.23	-27.69	169.5	-93.89	-87.66	8.3377	13.074	111.93	115.01
$ V ^{10}$	0.8627	0.8539	0.441	0.6258	0.5889	0.0455	0.0191	0.0109	0.0048	0.0047	0.0014	0.0035
Θ^{10}	59.875	51.332	37.535	45.86	-14.1	2.6555	91.717	93.341	-172.1	-168.3	-69.79	-67.3
$ V ^{11}$	0.8649	0.8272	0.4496	0.687	0.4054	0.0297	0.0125	0.0057	0.0018	0.0054	0.0014	0.0037
Θ^{11}	70.283	64.245	53.975	65.372	26.324	-1.613	88.602	91.942	-160.6	-164.2	-70.61	-70.01
$ V ^{12}$	1.9544	1.8609	0.9736	1.9764	1.7242	0.0162	0.0065	0.0021	0.0009	0.0056	0.0013	0.0032
Θ^{12}	87.03	88.535	88.413	94.159	97.802	-14.46	78.452	85.053	-39.67	-164.5	-73.93	-74.54
$ V ^{13}$	1.26	1.196	0.5842	1.1381	0.8068	0.0172	0.0071	0.0026	0.0007	0.0051	0.0013	0.0033
Θ^{13}	82.25	80.159	76.28	84.46	84.387	-13.43	78.893	84.734	-59.03	-165.3	-74.23	-74.56
$ V ^{14}$	0.999	0.9614	0.5162	0.8226	0.435	0.0313	0.0138	0.0072	0.003	0.0039	0.0011	0.0028
Θ^{14}	65.26	58.32	46.996	57.331	14.754	-7.131	82.867	86.625	-174.7	-173.2	-76.2	-73.7
$ \mathbf{I} ^2$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
 I ³	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{3}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ \mathbf{I} ^4$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I ⁵	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{5}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
 I ⁶	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{6}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
 I ⁹	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α ິ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ {\bf I} ^{10}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{10}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ I ^{11}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{11}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ I ^{12}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{12}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ I ^{13}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{13}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ I ^{14}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α^{14}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Tabla 4.49 Mediciones para la estimación por el método de Nguyen [19], con error para el sistema de 14 nodos con dos fuentes de armónicas

Las tablas 4.51 y 4.52 muestran la comparación entre la corriente real inyectada por las fuentes armónicas y la estimada. Como se observa en las tablas, los resultados varían, esto es debido al error introducido por las mediciones. A pesar de ello los resultados son aceptables.

Arm.	Nodo	Mag. de Corriente	Ang. de la Corriente
	1	0.18426	-38.2265
2	7	0.19013	144.8927
	8	0.01627	141.8642
	12	3.36966	28.29013
	1	0.10753	-55.17715
3	7	0.09444	135.2069
	8	0.03123	-46.34021
	12	2.35043	28.96169
	1	0.04395	-61.9347
4	7	0.04155	-57.05555
	8	0.01469	120.2445
	12	1.05803	28.40261
	1	0.05757	125.325
5	7	0.00397	-25.11005
	8	0.51322	152.7907
	12	1.79866	28.191
	1	0.00342	25.71728
7	7	0.0178	47.12143
	8	0.1678	76.31239
	12	1.40414	28.27677
	1	0.00048	-94.15639
11	7	0.00296	83.32912
	8	0.09648	81.80564
	12	0.00055	-98.3016
	1	0.00002	90.01597
13	7	0.00114	173.9028
	8	0.05476	177.0241
	12	0.0001	-4.50825
	1	0.00002	19.67667
17	7	0.00366	2.49711
	8	0.04804	-177.3918
	12	0	135.9539
	1	0.00045	74.7243
19	7	0.00097	96.22167
D	8	0.0233	-71.08115
	12	0.00002	63.02454
	1	0.00067	-64.20497
23	7	0.00053	109.1197
	8	0.0324	-76.4744
	12	0.00012	111.1899
	1	0.00015	-156.7841
25	7	0.00048	-158.6062
-•	8	0.00959	22.05263
	12	0.00001	22.13342
	1	0.00007	-158.1252
29	7	0.00184	-155.0321
	8	0.03083	25.05673
	12	0.00005	19.0512

Tabla 4.50 Corrientes armónicas estimadas, con error en las mediciones, por el método de Nguyen [19] para el sistema de 14 nodos con dos fuentes armónicas
Tabla 4.51 Comparación de la corriente del Compensador Estático de Vars contra los
estimados, con error en las mediciones, por el método de Nguyen [19] para el sistema
de 14 nodos

uc 17 houos							
Armónica	Mag. de	Mag. de	Error de	Ang. de	Ang. de	Error	
	Corriente	Corriente	la mag.	Corriente	Corriente	edel Ang.	
	estimada	real		estimada	real		
5	0.51322	0.51213	0.00109	152.7907	152.43	0.3607	
7	0.1678	0.18238	0.01458	76.31239	75.64	0.67239	
11	0.09648	0.0992	0.00272	81.80564	81.76	0.04564	
13	0.05476	0.05471	0.00005	177.0241	177.01	0.0141	
17	0.04804	0.04523	0.00281	-177.3918	-177.37	0.0218	
19	0.02333	0.02335	0.00002	-81.08115	-81.06	0.02115	
23	0.0324	0.03137	0.00103	-76.4744	-76.47	0.0044	
25	0.00959	0.00948	0.00011	22.05263	22.06	0.00737	
29	0.03083	0.02918	0.00165	25.05673	25.06	0.00327	

Tabla 4.52 Comparación de la corriente del Horno de arco contra los estimados, con error en las mediciones, por el método de Nguyen [19] para el sistema de 14 nodos

Armónica	Mag. de Corrient	Mag. de Corrient	Error de la	Ang. de Corrient	Ang. de Corrient	Error del
	estimada	real	mag.	estimada	real	Ang.
2	3.36966	3.37811	0.00845	28.29013	28.28	0.1013
3	2.35043	2.54455	0.19412	28.296169	28.28	0.16169
4	1.05803	1.09679	0.03876	28.40261	28.28	0.12261
5	1.79866	1.79874	0.00008	28.191	28.28	0.089
7	1.40414	1.36002	0.04412	28.27677	28.28	0.00323

En la tabla 4.53 están los voltajes armónicos calculados y estimados. Los voltajes armónicos estimados por el método de Nguyen [19] están sombreados, mientras que los demás voltajes fueron calculados con la expresión (3.8). Como se ve, los voltajes varían debido a que el error introducido por las mediciones es muy grande; aun así los voltajes armónicos son aceptables.

En la tabla 4.54 se tiene la Distorsión Armónica Total para cada nodo de la red. Se observa que en varios nodos se excede el valor de Distorsión Armónica Total permitido por el Estándar IEEE 519-1992, aunque debido a la existencia de dos fuentes armónicas, es necesario hacer un estudio de flujos armónicos para cada una de las fuentes y conocer así cual es la que debe ser sancionada. Se debe mencionar que estos resultados no son confiables como se ha demostrado, ya que existe bastante error en ellos.

	1		fuente	es armon	icas		
	Nod	Mag.	Mag.	Error	Ang.	Ang.	Error
Arm		Volt.	Volt.	de la	volt	Volt.	del ang.
		estim.	flujos	Mag.	estim.	Flujos	
	1	0.4281	0.4118	0.0163	41.51	39.54	1.97
	2	0.4681	0.4577	0.0104	35.634	35.798	0.164
	3	0.6871	0.6936	0.0065	15.055	13.254	1.801
	4	0.6041	0.6091	0.005	40.611	40.803	0.192
	5	0.5963	0.5912	0.0051	47.376	45.613	1.763
	6	0.939	0.9272	0.0118	81.16	80.957	0.203
	7	0.6882	0.751	0.0628	54.014	51.864	2.15
r	8	0.6826	0.751	0.0684	54.032	51.864	2.168
Z	9	0.7908	0.8339	0.0431	56.264	56.092	0.172
	10	0.8014	0.8367	0.0353	62.305	59.875	2.43
	11	0.8469	0.8662	0.0193	72.336	70.283	2.053
	12	1.9279	1.9347	0.0068	87.777	87.03	0.747
	13	1.2229	1.2305	0.0076	83.51	82.25	1.26
	14	0.9983	1.0239	0.0256	67.377	65.26	2.117
	1	0.3675	0.376	0.0085	31.304	30.984	0.32
	2	0.4168	0.412	0.0048	27.249	27.141	0.108
	3	0.5305	0.5693	0.0388	1.16	0.7867	0.3733
	4	0.5536	0.5596	0.006	33.581	33.532	0.049
	5	0.5041	0.5433	0.0392	39.446	39.035	0.411
	6	0.8876	0.9152	0.0276	78.028	78.049	0.0021
3	7	0.6718	0.7583	0.0865	44.547	43.66	0.887
0	8	0.6883	0.7583	0.07	44.526	43.66	0.866
	9	0.8571	0.869	0.0119	47.125	47.075	0.05
	10	0.7714	0.8549	0.0835	52.572	51.331	1.241
	11	0.7833	0.86	0.0767	65.482	64.245	1.237
	12	1.8048	1.9578	0.153	89.433	88.535	0.898
	13	1.1253	1.2237	0.0984	81.206	80.159	1.047
	14	0.9176	1.0084	0.0911	59.62	58.32	1.3
	1	0.2009	0.1918	0.0091	15.214	18.825	3.611
	2	0.2057	0.2076	0.0009	14.755	14.932	0.177
	3	0.2613	0.2606	0.0007	-18.1	-14.13	3.97
	4	0.2752	0.2849	0.0097	21.752	21.931	0.179
	5	0.27	0.2729	0.0029	23.951	28.009	4.058
	6	0.4423	0.4539	0.0116	72.909	73.09	0.181
4	7	0.4153	0.4165	0.0012	26.662	30.245	3.583
	8	0.4049	0.4165	0.0031	26.57	30.245	3.675
	9	0.4713	0.4877	0.0164	32.74	32.791	0.051
	10	0.4468	0.4623	0.0155	34.029	37.535	3.506
	11	0.4129	0.435	0.0221	51.152	53.975	2.823
	12	0.9589	1.0098	0.0509	88.004	88.413	0.409
	13	0.5738	0.609	0.0352	75.16	76.279	1.119
	14	0.4806	0.5058	0.0252	44.205	46.996	2.791

Tabla 4.53 Comparación de los voltajes armónicos contra los estimados, con error en las mediciones, por el método de Nguyen [19] para el sistema de 14 nodos con dos fuentes armónicas

	Nod	Mag.	Mag.	Error	Ang.	Ang.	Error
Arm		Volt.	Volt.	de la	volt	Volt.	del ang.
		estim.	flujos	Mag.	estim.	Flujos	1.0.55
	1	0.2483	0.2704	0.0221	31.395	29.429	1.966
	2	0.2841	0.2858	0.0017	25.357	25.282	0.075
	3	0.3102	0.3185	0.0056	-4.427	-6.409	1.982
	4	0.3787	0.3719	0.0068	31.151	30.989	0.162
	5	0.379	0.3844	0.0054	41.668	39.761	1.907
	6	0.8327	0.8402	0.0075	82.356	82.421	0.065
5	7	0.3995	0.3953	0.0042	27.389	25.374	2.015
-	8	0.2637	0.2741	0.0104	-55.85	-57.23	1.38
	9	0.6443	0.6509	0.0066	38.844	38.752	0.092
	10	0.6555	0.6445	0.011	46.797	45.86	0.937
	11	0.7105	0.7002	0.0103	65.816	65.372	0.444
	12	1.9941	1.9852	0.0089	94.107	94.159	0.052
	13	1.1579	1.1487	0.0092	84.494	84.46	0.034
	14	0.8028	0.7905	0.0123	57.736	57.331	0.405
	1	0.2453	0.2414	0.0039	-25.79	-25.6	0.119
	2	0.2517	0.2534	0.0017	-29.76	-29.56	0.2
	3	0.2583	0.2499	0.0084	-61.99	-61.62	0.37
	4	0.3254	0.3297	0.0043	-22.81	-22.56	0.25
	5	0.2948	0.2855	0.0093	-13.39	-12.93	0.46
	6	0.5491	0.5329	0.0162	78.798	78.967	0.169
7	7	0.5422	0.5201	0.0221	-22.23	-21.97	0.26
1	8	0.339	0.2987	0.0403	-27.44	-27.69	0.25
	9	0.736	0.7597	0.0237	-20.71	-20.43	0.28
	10	0.6276	0.6055	0.0221	-14.78	-14.1	0.68
	11	0.3989	0.3888	0.0101	25.622	26.324	0.702
	12	1.7237	1.6727	0.051	97.843	97.802	0.041
	13	0.8068	0.7851	0.0217	84.42	84.387	0.033
	14	0.4598	0.4476	0.0112	14.02	14.754	0.734
	1	0.0105	0.0106	0.0001	-16.62	-12.54	4.08
	2	0.01	0.0098	0.0002	-14.59	-14.45	0.14
	3	0.0054	0.0057	0.0003	-46.01	-41.01	5
	4	0.005	0.0050	0	12.356	12.539	0.183
	5	0.008	0.0085	0.0005	-7.427	-3.236	4.191
	6	0.0159	0.0151	0.0008	-8.972	-9.04	0.068
11	7	0.0445	0.0442	0.0003	159.74	159.62	0.12
11	8	0.2306	0.2357	0.0051	169.5	169.5	0
	9	0.0541	0.0533	0.0008	6.0486	6.1684	0.1198
	10	0.0449	0.0447	0.0002	2.9827	2.6555	0.3272
	11	0.0297	0.0295	0.0002	-1.564	-1.613	0.049
	12	0.0171	0.0161	0.001	-14.98	-14.46	0.52
	13	0.0174	0.0179	0.0005	-13.83	-13.43	0.4
	14	0.0332	0.033	0.0002	-6.972	-7.131	0.159

Arm	Nod	Mag. Volt	Mag. Volt	Error de la	Ang. volt	Ang. Volt	Error del ang
111110		estim.	fluios	Mag.	estim.	Fluios	uci ung.
	1	0.0085	0.0084	0.0001	95.561	95.643	0.082
	2	0.0073	0.0073	0	94.006	94.1	0.094
	3	0.0032	0.0031	0.0001	69.558	69.828	0.27
	4	0.0016	0.0016	0	173.68	170.85	2.83
	5	0.0039	0.0039	0	109.19	109.57	0.38
	6	0.0061	0.0061	0	84.496	84.544	0.048
	7	0.0378	0.037	0.0008	-96.98	-96.94	0.04
13	8	0.1632	0.1623	0.0009	-93.9	-93.89	0.01
	9	0.0228	0.022	0.0008	94.68	94.946	0.266
	10	0.0187	0.0183	0.0004	91.673	91.717	0.044
	11	0.0123	0.012	0.0003	88.487	88.602	0.115
	12	0.0067	0.0063	0.0004	78.232	78.452	0.22
	13	0.0073	0.0071	0.0002	78.68	78.893	0.213
	14	0.0135	0.0132	0.0003	82.764	82.867	0.103
	1	0.0119	0.0121	0.0002	89.347	89.375	0.028
	2	0.0087	0.0087	0	88.658	88.697	0.039
	3	0.0009	0.0009	0	-158.1	-159	1.1
	4	0.0089	0.009	0.0001	-95.75	-95.74	0.01
	5	0.0041	0.0042	0.0001	-102.5	-102.6	0.1
	6	0.0016	0.0016	0	92.502	92.646	0.144
17	7	0.049	0.05	0.001	-88.46	-88.45	0.01
17	8	0.1929	0.1854	0.0075	-87.66	-87.66	0
	9	0.0127	0.0131	0.0004	95.833	95.92	0.087
	10	0.0102	0.0104	0.0002	93.333	93.341	0.008
	11	0.0058	0.0059	0.0001	91.941	91.942	0.001
	12	0.002	0.002	0	85.217	85.053	0.164
	13	0.0025	0.0026	0.0001	84.782	84.734	0.048
	14	0.0069	0.007	0.0001	86.526	86.525	0.001
	1	0.0128	0.0127	0.0001	170.18	172.22	2.04
	2	0.0073	0.0079	0.0006	173.81	173.21	0.6
	3	0.0047	0.0043	0.0004	-59.41	-57.59	1.82
	4	0.0132	0.0131	0.0001	-6.326	-6.294	0.032
	5	0.0104	0.01	0.0004	-9.751	-8.299	1.452
	6	0.0016	0.0015	0.0001	-24.98	-25.45	0.47
10	7	0.0309	0.0321	0.0012	6.6792	6.8693	0.1901
17	8	0.1088	0.1102	0.0014	8.2839	8.3377	0.0538
	9	0.0063	0.0065	0.0002	-171.5	-171.4	0.1
	10	0.0047	0.0049	0.0002	-172.2	-172.1	0.1
	11	0.0017	0.0018	0.0001	-158.4	-160.6	2.2
	12	0.001	0.0009	0.0001	-39.68	-39.67	0.01
	13	0.0007	0.0006	0.0001	-55.49	-59.032	3.542
	14	0.0028	0.0029	0.0001	-174.5	-174.7	0.2

Arm	Nod	Mag.	Mag.	Error	Ang.	Ang.	Error
		Volt.	Volt.	de la	volt	Volt.	del ang.
		estim.	flujos	Mag.	estim.	Flujos	
	1	0.0099	0.0099	0	16.296	17.688	1.392
	2	0.0034	0.0045	0.0011	37.195	34.562	2.633
	3	0.0092	0.0089	0.0003	116.27	117	0.73
	4	0.0123	0.0131	0.0008	-147.4	-147.8	0.4
	5	0.0197	0.0201	0.0004	-150	-150.1	0.1
	6	0.0064	0.0065	0.0001	-159.4	-159.3	0.1
12	7	0.0457	0.0447	0.001	11.77	11.779	0.009
23	8	0.1769	0.1718	0.0051	13.073	13.074	0.001
	9	0.0048	0.0046	0.0002	-167.8	-167.9	0.1
	10	0.0047	0.0046	0.0001	-168.4	-168.3	0.1
	11	0.0054	0.0053	0.0001	-164.4	-164.2	0.2
	12	0.0058	0.0054	0.0004	-164.7	-164.5	0.2
	13	0.0054	0.0052	0.0002	-165.5	-165.3	0.2
	14	0.004	0.0039	0.0001	-173.3	-173.2	0.1
	1	0.0013	0.0015	0.0002	111.73	108.51	3.22
	2	0.0009	0.0006	0.0003	124.84	129	4.16
	3	0.0009	0.0011	0.0002	-180	176.8	3.2
	4	0.0021	0.0018	0.0003	-57.87	-56.88	0.99
	5	0.0044	0.0045	0.0001	-62.55	-61.97	0.58
	6	0.0015	0.0015	0	-69.29	-69.4	0.11
25	7	0.0149	0.0156	0.0007	111.6	111.57	0.03
25	8	0.0572	0.0573	0.0001	111.93	111.93	0
	9	0.0013	0.0014	0.0001	-67.16	-67.15	0.01
	10	0.0013	0.0013	0	-69.82	-69.79	0.03
	11	0.0013	0.0014	0.0001	-70.8	-70.61	0.19
	12	0.0012	0.0013	0.0001	-74.31	-73.93	0.38
	13	0.0012	0.0013	0.0001	-74.63	-74.23	0.4
	14	0.001	0.0011	0.0001	-76.29	-76.2	0.09
	1	0.0022	0.002	0.0002	108.18	106.63	1.55
	2	0.0012	0.0011	0.0001	132.41	133.62	1.21
	3	0.0007	0.0008	0.0001	-48.96	-47.69	1.27
	4	0.0008	0.0009	0.0001	79.545	84.02	4.475
	5	0.0113	0.0114	0.0001	-65.1	-65.1	0
	6	0.004	0.0039	0.0001	-70.74	-70.76	0.02
20	7	0.0584	0.0588	0.0004	114.87	114.87	0
29	8	0.2159	0.2078	0.0081	115.01	115.01	0
	9	0.0038	0.0039	0.0001	-64.14	-64.14	0
	10	0.0035	0.0036	0.0001	-67.25	-67.3	0.05
	11	0.0035	0.0036	0.0001	-69.87	-70.01	0.14
	12	0.003	0.0033	0.0003	-74.33	-74.54	0.21
	13	0.0031	0.0032	0.0001	-76.35	-74.56	0.21
	14	0.0028	0.0028	0	-73.53	-73.7	0.17

Nod	%THD
1	0.655379
2	0.711686
3	0.951784
4	0.949658
5	0.918252
6	1.55135
7	1.226725
8	1.19888
9	1.565771
10	1.479492
11	1.416050
12	3.659264
13	2.155883
14	1.684854

Tabla 4.53 THD de los voltajes, con error en las mediciones, por el método de Nguyen[19] para el sistema de 14 nodos

Se puede observar que al afectar las mediciones con el error establecido en el Estándar IEEE 519-1992, la estimación no es exacta, esto es debido a que el error es muy grande, además de que los método de Nguyen [19] Heydt [15] son deterministas, lo cual los hace más sensibles a los errores de medición.

CAPÍTULO 5

CONCLUSIONES Y RECOMENDACIONES PARA TRABAJOS FUTUROS

5.1 CONCLUSIONES

Se emplearon dos sistemas de prueba, uno de 5, basado en el sistema de Stagg y 14 nodos, basado en la red de la IEEE, con sus respectivas modificaciones.

En el método propuesto por Heydt en [15] no se obtuvieron los resultados esperados para el sistema de 5 nodos, por ello se decidió no llevar a cabo el caso con error. Para el caso del sistema de 14 nodos con una y dos fuentes armónicas los resultados fueron exactos, identificando correctamente la ubicación de las fuentes de armónicas. El problema que se tuvo en el sistema de 5 nodos puede ser debido a que como es un sistema muy pequeño las armónicas no se distribuyen como el de 14, lo que hace más difícil de identificar la fuente.

El método propuesto por Nguyen [19] dio buenos resultados para el sistema de 5 nodos y el sistema de 14 nodos con una y dos fuentes de armónicas, ya que identificó correctamente la ubicación de las fuentes de armónicas.

Debido a que se obtuvieron buenos resultados con el método de Nguyen se decidió probar los sistemas con errores en las mediciones, aunque desafortunadamente no se encontró en que nodo se encontraban las fuentes de armónicas. Esto pudo suceder debido a dos razones, la primera es que el método es determinista y es más sensible a los errores; la segunda que el error permitido por el Estándar IEEE 519-1992 es muy grande, lo cual ocasiona que el estimador tenga problemas al encontrar las fuentes.

El índice de Distorsión Armónica Total utilizando voltajes no se puede emplear para encontrar la fuente de armónicas, ya que no se saben cuantas fuentes están conectadas a la red, además las armónicas se propagan, al igual que sus efectos por la red.

5.2 **Recomendaciones Para Trabajos Futuros**

Ya que sólo se pudieron localizar dos fuentes armónicas, es necesario probar los métodos propuestos con más fuentes de armónicas. También es necesario hacer pruebas a sistemas con mayor cantidad de nodos, y si es posible un caso real, ya que se obtuvieron mejores resultados con el sistema de más nodos.

Además de identificar la fuente de armónicas, es posible conocer el tipo de fuente que introduce armónicas a la red, esto se hace obteniendo el espectro armónico de la fuente una vez que se ha identificado la ubicación de esta.

Es pertinente comparar los resultados obtenidos con estos métodos empleando otros métodos para la identificación de fuentes armónicas.

Debido a que al tener error en las mediciones el estimador no dio los resultados esperados, es necesario realizar una reformulación para que estos métodos sean estadísticos.

REFERENCIAS

- [1]Mahmoud A. A., Schultz D. R., "A Method for Analyzing Harmonic Distribution in A.C. Power Systems" *IEEE Trans. on Power Apparatus and Systems*, Vol. PAS-101, No. 6, June 1982.
- [2] Xia D., Heydt G. T., "Harmonic Power Flow studies Part I: Formulation and Solution" *IEEE Trans. on Power Apparatus and Systems*, Vol. PAS-101, No. 6 June 1982.
- [3] Xia D., Heydt G. T., "Harmonic Power Flow studies Part II: Implementation and Practical Aplication" *IEEE Trans. on Power Apparatus and Systems*, Vol. PAS-101, No. 6 June 1982.
- [4] Acha E., Madrigal M., *Power System Harmonics Computer Modelling and Analysis*, 2nd ed., Ed. New York: John Wiley & Sons, 2001, pp. 35-72.
- [5] Arrillaga J., Smith B. C., Watson N. R., Wood A. R., Power System Harmonic Analysis, 2nd ed., Ed. New York: John Wiley & Sons, 1997, pp. 97-130.
- [6] Heydt G. T., *Electric Power Quality*, 2nd ed., Indiana: Stars in a Circle Publications, 1994, pp. 289-341.
- [7] Herraiz S., Sainz L., Clua J., "Review of Harmonic Load Flow Formulations", *IEEE Trans. on Power Delivery*, Vol. 18, No. 3, July 2003.
- [8] Arrillaga J., Callaghan C. D., "Double-iterative algorithm for the analysis of power and harmonic flows at AC/DC convertors terminals" *IEEE Proceedings*, Vol. 136, PT. C., No. 6 November 1989.
- [9] Sharma V., Fleming R. J., Niekamp L., "An Iterative Approach for Analysis of Harmonic Penetration in the Power Transmissions Networks" *IEEE/PES Winter meeting*, New York, New York, August 31, 1990.

- [10] Carbone R., Fantaucci M., Gagliardi F., Testa A., "Some Considerations on the Iterative Harmonic Analysis Convergence", *IEEE Trans. on Power Delivery*, Vol.13, No. 1, April 1998.
- [11] Smith B. C., Arrillaga J., Wood A. R., Watson N. R., "A review of Iterative Harmonic Analysis for AC-DC Power Systems", *IEEE Trans. on Power Delivery*, Vol. 8, No. 2, January 1993.
- [12] Task Force on Harmonics Modeling and Simulation, "Modeling and Simulation of the Propagation of Harmonics in Electric Power Networks Part II: Sample Systems and Examples" *IEEE Trans. on Power Delivery*, Vol. 11, No. 1, January 1996.
- [13] Task Force on Harmonics Modeling and Simulation, "Test Systems for Harmonics Modeling Simulation", *IEEE Trans. on Power Delivery*, Vol. 14, No. 2, April 1999.
- [14] Task Force on Harmonics Modeling and Simulation, "Modeling and Simulation of the Propagation of Harmonics in Electric Power Networks Part I: Concepts, Models, and Simulation Techniques" *IEEE Trans. on Power Delivery*, Vol. 11, No. 1, January 1996.
- [15] Heydt G. T., "Identification of Harmonic Sources by a State Estimation Technique", *IEEE Transactions on Power Delivery*, Vol. 4 No. 1, January 1989.
- [16] Sakis M. A. P., Zhang F., Zelingher S., Power System Harmonic State Estimation, *IEEE Transactions on Power Delivery*, Vol. 9 No. 3, July 1994.
- [17] Du Z. P., Arrillaga J., Watson N. R., Chen S., "Identification of Harmonic Sources of Power Systems Using State Estimation", *IEE Proc.-Gener. Transm. Distrib.*, Vol. 146 No. 1, January 1999.

- [18] Lobos T., Kozina T., Koglin H. J., "Power Systems Harmonic Estimation Using Linear Least Squares Method and SVD", *IEE Proc.-Gener. Transm. Distrib.*, Vol. 148 No. 6, November 2001.
- [19] Nguyen H. T., Yang J. J., Choi, S. S., "On Harmonic State Estimation and the Evaluation of Harmonic Power Contribution from Sources", *IEEE*, 2010.
- [20] Kent K. C., Watson N. R., Arrillaga J., "An Adaptative Kalman Filter for Dynamic Harmonic State Estimation and Harmonic Injection Tracking", *IEE Transactions on Power Delivery*, Vol. 20 No. 2, April 2005.
- [21] Beides H. M., Heydt G. T., "Dynamic State Estimation of Power System Harmonics Using Kalman Filter Methodology", *IEEE Transactions on Power Delivery*, Vol. 6 No. 4, October 1991.
- [22] Haili M., Girgis A. A., "Identification and Tracking of Harmonic Sources in a Power System Using A Kalman Filter", *IEEE Transactions on Power Delivery*, Vol. 11 No. 3, July 1996.
- [23] Hartana R. K., "Constrained Neural Network-Based Identification of Harmonic Sources", *IEEE Transactions on Industry Applications*, Vol. 29 No. 1, January/February 1993.
- [24] Gursoy E., "Independent Component Analysis for Harmonic Source Identification in Electric Power Systems", Thesis, Drexel University, April 2007.
- [25] Saab S. S., "Discrete-time Kalman Filter under incorrect noise covariances", *Proc. Amer. Control Conf.*, Vol. 2, June 1995, pp.1152-1156.
- [26] Seber G. A. F., Alan J. L. *Linear Regression Analysis*, 2nd ed., New Zealand, Wiley Series in Probability and Statistics, 2003, pp. 35-42.

- [27] Montoya M. E., "Estudio Estocástico de Cargabilidad en Líneas de Transmisión", Tesis de Maestría, Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto Politécnico Nacional, México 2008.
- [28] IEEE Std 519-1992, "IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems".
- [29] Schweppe F. C., Wildes J, "Power System Static-State Estimation", pt. I, II, III, IEEE Transaction on Power Apparatus and Systems, Vol. 1, pp. 89, January 1970.
- [30] Kent K. C. Y., "Harmonic State Estimation and Transient State Estimation", Thesis, University of Canterbury, Christchurch, New Zealand, 2005.
- [31] Hernández A. L. A., Romero R. D., Robles G. J., "Efecto de un CEV en la Penetración Armónica en un Sistema de Potencia", VI Congreso Internacional de Ingeniería Electromecánica y de Sistemas, Noviembre 2011.
- [32] <u>http://www.shenyan-sh.cn/html/20110711171212734.html</u>
- [33] Montero C. S., "Algoritmos de Detección de Origen de Armónicos en un Sistema Eléctrico", Tesis, SEPI-IPN, ESIME Zacatenco, México, Diciembre 2005..
- [34] Luna V. C. L. E., "Metodología para el Análisis de las Perturbaciones Armónicas en los Sistemas Industriales en Baja Tensión", Tesis, SEPI-IPN, ESIME Zacatenco, México, Junio 2007.
- [35] Gómez V. J. C., "Estudio de la Sensibilidad de los Modelos de Cargas para Análisis de Armónicos en Sistemas Eléctricos Industriales", Tesis, SEPI-IPN, ESIME Zacatenco, México, Mayo 2001.
- [36] Reyes T. E., "Aplicación de un Filtro Activo de Corriente en la Reducción de Armónicos en Sistemas Eléctricos Industriales, Tesis, SEPI-IPN, ESIME Zacatenco, México, Agosto 2005.

- [37] Michel H. H. Y., "Estimación de Estado por Mínimos Cuadrados Ponderados en Sistemas de Potencia Empleando el Método de Newton", Tesis, SEPI-IPN, ESIME Zacatenco, México, Junio 2009.
- [38] Trejo N. F., "Técnica Computacional para Estimación de Estado en Redes de Distribución", Tesis, SEPI-IPN, ESIME Zacatenco, México, 2011.
- [39] Ávila A. D. F., "Robustez de la Estimación de Estado en SEP's por el Método de Cuadrados Mínimos, Tesis, SEPI-IPN, ESIME Zacatenco, México, Agosto 2012.

APÉNDICE A

INFORMACIÓN CARACTERÍSTICA DE LOS SISTEMAS DE **PRUEBA**

A.1 SISTEMA DE 5 NODOS.

i ubiu 11.1 Daios de las lineas del sistema de 5 nouos							
Línea p-q	Impedancia serie	Admitancia en Derivación					
1 – 2	0.02 + j0.06	0 + j0.03					
1 – 3	0.08 + j0.24	0 + j0.025					
2 – 3	0.06 + j0.18	0 + j0.02					
2 - 4	0.06 + j0.18	0 + j0.02					
2 – 5	0.04 + j0.12	0 + j0.015					
3 - 4	0.01 + j0.03	0 + j0.01					
4 - 5	0.08 + j0.24	0 + j0.025					

Tabla A 1 Datos de las líneas del sistema de 5 nodos

T	Cabla A.2 Datos de los	generadores del sistema de 5 nodos	'
	Nodo	Admitancia del generador	
	1	0 + j0.0001	
	2	0 + j0.001	

Tabla A.3 Datos de los flujos de potencia a frecuencia fundamental del sistema de 5 nodos

Nodo	V	θ	Pg	Q_g	P _d	Q_d
1	1.05	0	1.526	0.6584	0	0
2	1	-2.6944	0.3	-0.6512	0	0
3	0.9796	-6.2114	0	0	0.45	0.2
4	0.9776	-6.9232	0	0	0.8	0.3
5	0.9922	-6.6963	0	0	0.5	0.25

Donde:

 $\boldsymbol{P}_{\boldsymbol{g}}$ es la Potencia Activa generada

 $\boldsymbol{Q}_{\boldsymbol{g}}$ es la Potencia Reactiva generada

 P_d es la Potencia Activa demandada

 $\boldsymbol{Q_d}$ es la Potencia Reactiva demandada

Tabla A.4 Datos de los capacitores del sistema de 5 nodos

Nodo	Potencia del Capacitor
4	0.3

A.2 SISTEMA DE 14 NODOS

Línea p-q	Impedancia serie	Admitancia en Derivación
1-2	0.01938 + j0.05917	0 + j0.0264
1 – 5	0.05403 + j0.22304	0 + j0.0264
2 – 3	0.04699 + j0.19797	0 + j0.0219
2 - 4	0.05811 + j0.17632	0 + j0.0187
2 - 5	0.05695 + j0.17388	0 + j0.017
3 – 4	0.06701 + j0.17103	0 + j0.0173
4 - 5	0.01335 + j0.04211	0 + j0.0064
4 – 7	0 + j0.20912	0
4 – 9	0 + j0.55618	0
5 - 6	0 + j0.25202	0
6 – 11	0.09498 + j0.1989	0
6 – 12	0.12291 + j0.25581	0
6 – 13	0.06615 + j0.13027	0
7 - 8	0 + j0.17615	0
7 – 9	0 + j0.11001	0
9 – 10	0.03181 + j0.0845	0
9 - 14	0.12711 + j0.27038	0
10 - 11	0.08205 + j0.19207	0
12 – 13	0.22092 + j0.19988	0
13 - 14	0.17093 + j0.34802	0

Tabla A.5 Datos de las líneas del sistema de 14 nodos

Nodo	Admitancia del generador
1	0 + j0.25
2	0 + j0.25
6	0 + j0.25

Nodo	<i>V</i>	θ	P_{g}	Q_g	P_d	\boldsymbol{Q}_d
1	1.06	0	2.61681	28633	0	0
2	1.045	-5.68	0.183	0.05857	0.217	0.127
3	1.0427	-15.3	0	0	0.942	0.19
4	1.02482	-11.41	0	0	0	0
5	1.0337	-9.82	0	0	0.076	0.016
6	1.07	-15.87	-0.112	0.442	0.112	0.075
7	1.0193	-14.47	0	0	0	0
8	1.0209	-14.49	0	0	0	0
9	1.0147	-16.09	0	0	0	0
10	1.0168	-16.33	0	0	0.09	0.058
11	1.0394	-16.21	0	0	0.035	0.018
12	1.0528	-16.72	0	0	0.061	0.016
13	1.0485	-16.73	0	0	0.135	0.058
14	1.0154	-17.39	0	0	0.149	0.05

Tabla A.7 Datos de los flujos de potencia a frecuencia fundamental del sistema de 14 nodos

Tabla A 8 Datos o	le los	capacitores	del sistema	de 14	4 nodos
I ubiu 11.0 Duios t	ic i o s	cupachores	uci sisiemu	uc 1-	+ nouos

Nodo	Potencia del Capacitor
9	0.19

APÉNDICE B

TEORÍA DE ARMÓNICAS

B.1 SERIES DE FOURIER

Por definición, una función periódica, f(t), es tal que f(t) = f(t + T). Esta función puede representarse por series trigonométricas de elementos que cosisten de un elemento de CD y otros elementos con frecuencias que comprende la componente fundamental y los múltiples enteros de las frecuencias.

La expresión para las series trigonométricas f(t) es la siguiente:

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t)]$$
(B1)

Donde $\omega_0 = 2\pi/T$.

La ecuación (B1) puede simplificarse de la siguiente forma:

$$f(t) = c_o + \sum_{k=1}^{\infty} c_k \sin(h\omega_0 t + \varphi_k)$$
(B2)

Donde:

$$c_o = \frac{a_0}{2}$$
$$c_k = \sqrt{a_k^2 + b_k^2}$$
$$\varphi_k = \tan^{-1}\left(\frac{a_k}{b_k}\right)$$

La ecuación (B2) se conoce como series de Fourier y describe una función periódica compuesta de las contribuciones de funciones sinusoidales a diferentes frecuencias.

- $(k\omega_0)$ késimo orden armónico de la función periódica
- c_o magnitud de la componente de CD
- c_k y φ_k magnitud y ángulo de fase de la késima componente armónica.

El componente con k = 1 se conoce como componente fundamental. La magnitud y ángulo de fase de cada armónica determina la forma de onda resultante f(t).

La ecuación (B2) puede representarse en forma compleja:

$$f(t) = \sum_{k=1}^{\infty} c_k e^{jk\omega_0 t}$$
(B3)

Donde:

$$c_{k} = \frac{1}{T} \int_{-T/2}^{T/2} f(t) c_{k} e^{-jk\omega_{0}t} dt$$
(B4)

B.2 COEFICIENTES DE FOURIER

Si una función f(t) es periódica con un periodo $T(\text{esto es}, f(t) = f(t \pm NT))$, entonces f(t) puede escribirse en forma rectangular como:

$$f(t) = I_{dc} + \sum_{k=1}^{\infty} [a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t)], \ \omega_0 = \frac{2\pi}{T}$$
(B5)

Donde:

$$I_{dc} = \frac{1}{T} \int_{t_0}^{t_0 + T} f(t) dt$$
$$a_k = \frac{2}{T} \int_{t_0}^{t_0 + T} f(t) \cos(k\omega_0 t) dt$$

Si se quiere pasar la ecuación (B5) a su forma polar queda igual a la ecuación (B2).

B.3 DISTORSIÓN ARMÓNICA TOTAL (THD)

La distorsión armónica total (THD) es un índice usado frecuentemente en sistemas de transmisión y distribución. Considera la contribución de cada componente armónico en la señal. El THD se define para señales de corriente y voltaje, respectivamente de la siguiente forma:

$$THD_V = \frac{\sqrt{\sum_{h=2}^{\infty} V_h^2}}{V_1} \tag{B6}$$

$$THD_I = \frac{\sqrt{\sum_{h=2}^{\infty} I_h^2}}{I_1}$$
(B7)

B.4 DISTORSIÓN TOTAL DE LA DEMANDA (TDD)

La distorsión Armónica es mas significativa cuando se monitorea en el punto de acoplamiento común (generalmente el punto de medición del cliente) sobre un periodo de tiempo que refleje la demanda máxima del cliente, generalmente 15 a 30 minutos como se sugiere en el Estándar IEEE 519-1992. Fuentes débiles con una corriente de demanda grande relativa a la corriente medida tendera a mostrar una onda mas distorsionada. A la inversa, fuentes fuertes caracterizadas por operar a bajas corrientes de demanda mostraran una forma de onda menos distorsionada. La distorsión total de la demanda se basa en la corriente demandada, I_L , por encima del periodo de monitores:

$$DD = \frac{\sqrt{\sum_{h=2}^{\infty} I_h^2}}{I_L} \tag{B8}$$

B.5 CANTIDADES DE POTENCIA BAJO SITUACIONES NO SINUSOIDALES

B.5.1 VOLTAJE INSTANEO

$$f(t) = \sum_{h=1}^{\infty} f_h(t) = \sum_{h=1}^{\infty} \sqrt{2} F_h \sin(h\omega_0 t + \theta_h)$$
(B9)

B.5.2 POTENCIA INSTANTÁNEA

$$p(t) = v(t)i(t) \tag{B10}$$

B.5.3 VALORES RMS

$$F_{rms} = \sqrt{\frac{1}{T} \int_0^T f^2(t) dt} = \sqrt{\sum_{h=1}^\infty F_h^2}$$
(B11)

 F_{rms} es el valor rms de la función F, que puede ser un voltaje o una corriente.

APÉNDICE C

PROGRAMA PARA EL CÁLCULO DE FLUJOS ARMÓNICOS POR

EL MÉTODO DE INYECCIONES DE CORRIENTE

C.1 RUTINA PRINCIPAL HARM_INJ

!PROGRAMA PARA EL CALCULO DE INYECCIONES ARMÓNICAS !EN UN SISTEMA ELÉCTRICO DE POTENCIA !ELABORADO POR: LUIS ALBERTO HERNÁNDEZ ARMENTA

PROGRAM HARM_INJ

USE MSIMSLMS USE MSIMSLC USE mDATA01 USE mDATA03 USE mDATA04 USE mDATA05 USE mDATA06 USE mDATA07 USE mDATA08 USE mDATA09

IMPLICIT NONE

! LA SUBRUTINA PRESENTA HACE UNA BREVE PRESENTACION! PIDE LOS ARCHIVOS DE ENTRADA Y SALIDA! E IMPRIME LA PRESENTACION EN ELLOSCALL PRESENTA

! LA SUBRUTINA LEEDATOS, LEE LOS DATOS DE LOS ELEMENTOS ! DEL SISTEMA CALL LEEDATOS

ALLOCATE(Vharmon(NOnodos, 50, NOfarm))

DO armon=1, NOfarm

! LA SUBRUTINA LEEDATOSARM, LEE LOS DATOS DE TODAS LAS ¡FUENTES ARMÓNICAS ! DEL SISTEMA

CALL LEEDATOSARM

```
ALLOCATE (Zcap(NOcap),
Ycap(NOcap),Zcar(NOcarga),Ycar(NOcarga), R(NOcarga),
XL(NOcarga))
```

Apéndice C

ALLOCATE (XS(NOcarga), Ih(NOnodos), Zlin(NOlin),Ylin(NOlin),Zgen(NOgen)) ALLOCATE (Yh(NOnodos,NOnodos)) ALLOCATE (invYh(NOnodos,NOnodos), Vh(NOnodos), Vharm(NOnodos,NOarm))

DO h=1, NOarm

!!! AFECTA LOS DATOS PARA CADA ARMÓNICA DEL SISTEMA

CALL CDATOS

!!! CONSTRUYE LA MATRIZ YBUS PARA CADA ARMÓNICA DEL SISTEMA

CALL CYBUS

!!! SOLUCION DE FLUJOS ARMÓNICOS POR EL METODO DE INYECCION DE CORRIENTE

CALL SOLFLUJ

END DO

!!!! CALCULA EL THD DE CADA FUENTE ARMÓNICA

CALL THD

DEALLOCATE (Arm, IFA, angFA, Iarm) DEALLOCATE(Zcap, Ycap,Zcar,Ycar, R, XL) DEALLOCATE(XS, Ih, Zlin,Ylin,Zgen) DEALLOCATE(Yh) DEALLOCATE(invYh, Vh, Vharm) DEALLOCATE (THDV)

END DO

IF (NOfarm .GT. 1) THEN

!!!! CALCULA EL THD DE LAS DOS FUENTES

CALL THDTOT

END IF

END PROGRAM

C.2 SUBRUTINA LEEDATOS

SUBROUTINE LEEDATOS

!PIDE NOMBRE DE ARCHIVOS: DATOS Y RESULTADOS !ABRE UNIDADES LOGICAS DE ENTRADA Y SALIDA !LEE TODA LA INFORMACION REQUERIDA PARA EL PROGRAMA

USE MDATA01 USE MDATA02 USE MDATA04 USE MDATA05 USE MDATA06 USE MDATA08 USE MDATA08

IMPLICIT NONE

INTEGER :: ELE, NODO

CHARACTER(40) :: FECHA

INTEGER(4) HORA(3)

CALL ITIME (HORA)

CALL DATE (FECHA)

!EMPIEZA LECTURA DE DATOS

READ(1,*)NONODOS, NOLIN, NOGEN, NOCARGA, NOCAP, NOFARM, MVABASE

!ASIGNA LOS TAMAÑOS ESPECIFICOS PARA EL CASO DE LAS LINEAS

ALLOCATE (p(NOLIN), Q(NOLIN), RPQ(NOLIN), IPQ(NOLIN), YPQ2(NOLIN), INDTR(NOLIN))

!ASIGNA LOS TAMAÑOS ESPECIFICOS PARA EL CASO DE LOS GENERADORES

ALLOCATE (NODGEN (NOGEN) , IGEN (NOGEN))

!ASIGNA LOS TAMAÑOS ESPECIFICOS PARA EL CASO DE TRANSF

ALLOCATE (NODTRAFO (NOTRAFO) , ZTRAFO (NOTRAFO) , PTRAFO (NOTRAFO))

!ASIGNA LOS TAMAÑOS ESPECIFICOS PARA EL CASO DE CARGAS

ALLOCATE (NOCARGA (NOCARGA) , QCARGA (NOCARGA) , PCARGA (NOCARGA))

!ASIGNA LOS TAMAÑOS ESPECIFICOS PARA EL CASO DE CAPACITORES

ALLOCATE (NOCAP (NOCAP) , QCAP (NOCAP))

!ASIGNA LOS TAMAÑOS ESPECIFICOS DE LOS VECTORES QUE TIENEN !LOS DATOS DE LOS FLUJOS DE POTENCIA

ALLOCATE (TIPON(NONODOS), MAGV(NONODOS), ANGV(NONODOS))

```
ALLOCATE (V(NONODOS))
     WRITE(2,18)ARCHRES
18 FORMAT( 3/, '>>NOMBRE DEL ARCHIVO DE SALIDA : ', A20)
     WRITE (2,19)FECHA
19
   FORMAT (3/,'>> FECHA : ',A40)
   WRITE(2,20) HORA
20 FORMAT (3/,'>> HORA : ',1X,12,':',12,':',12)
!LEE DATOS DE CADA LINEA
   DO ELE=1, NOLIN
          READ(1,*) P(ELE), Q(ELE), RPQ(ELE), IPQ(ELE), YPQ2(ELE),
INDTR(ELE)
   END DO
! IMPRIME LOS DATOS DE LA LINEAS
     WRITE(2,01)
01 FORMAT(3/,9X,'---- D A T O S D E E N T R A D A
____')
     WRITE(2,02) NONODOS, NOLIN, NOGEN, NOCARGA, NOCAP
02 FORMAT(2/, 'NUMERO DE NODOS = ',13,1/, 'NUMERO DE LINEAS =
', I3, 1/, 'NUMERO DE GENERADORES = ',&
             1/,I3,1/, 'NUMERO DE CARGAS = ',I3, 1/, 'NUMERO DE
CAPACITORES = ', I3)
     WRITE(2,03)
03 FORMAT(3/,9X,'---- D A T O S D E L I N E A S --
--')
     WRITE(2,04)
04 FORMAT(2/,19X,'IMPEDANCIAS Y ADMITANCIAS PRIMITIVAS',&
             1/,10X,'LINEA',2X,'NE',5X,'NR',4X,'IMPEDANCIA
SERIE', 9X, 'YPQ/2', 5X, 'INDICADOR DE
TRANSFORMADOR(1=TRAFO,0=LINEA)')
     DO ELE=1,NOLIN
1
          IF (INDTR(ELE) .EQ. 0) THEN
                \texttt{WRITE(2,05)ele, p(ele), Q(ele), RPQ(ele), IPQ(ele),}
YPO2(ELE), INDTR(ELE)
           05 FORMAT(12X,I3,I6,I6,F10.5,'+J',F8.5,'0.0
+J',F8.5, 12X, I6)
```

! END IF END DO WRITE(2,06) ! ! OG FORMAT(3/,9X,'---- D A T O S D E L O S T R A F O S. ----') WRITE(2,07) 1 !07 FORMAT(2/,19X,'IMPEDANCIAS Y ADMITANCIAS PRIMITIVAS',& 1/,10X,'TRANSF.',2X,'NE',5X,'NR',4X,'IMPEDANCIA 1 SERIE',9X,'YPQ/2') DO ELE=1,NOLIN ! WRITE(*,*) '1' ! ! IF (INDTR(ELE) .EQ. 1) THEN ! WRITE(2,08)ELE, P(ELE), Q(ELE), ZPQ(ELE), YPQ2(ELE) ! 08 FORMAT(12X, I3, I6, I6, F10.5, SP, F8.5, '+j', F8.5, '0.0 +J',F8.5) ! END IF ! END DO !LEE LOS DATOS DEL GENERADOR DO ELE=1, NOGEN READ(1,*)NODGEN(ELE), IGEN(ELE) END DO WRITE(2,09) 09 FORMAT(3/,9X,'----DATOS DEL GENERA D O R ----') WRITE(2,10) 10 FORMAT(2/,10X,'GENERADOR',2X,'NODO',4X,'IMPEDANCIA DEL GEN') DO ELE=1, NOGEN WRITE(2,11)ELE, NODGEN(ELE), IGEN(ELE) 11 FORMAT(12X, I3, 3X, I6, 2X, F10.5) END DO

!!!LECTURA DE LOS DATOS DE LAS CARGAS

DO ELE=1, NOCARGA READ(1,*)NODCARGA(ELE), PCARGA(ELE), QCARGA(ELE) END DO WRITE(2,12) 12 FORMAT(3/,9X,'----DATOSDELASCAR G A S ----') WRITE(2,13) 13 FORMAT(2/,12X,'CARGA',4X,'NODO',4X,'POTENCIA ACTIVA (MW).',4X,'POTENCIA REACTIVA (MVAR)') DO ELE=1,NOCARGA WRITE(2,14) ELE, NODCARGA(ELE), PCARGA(ELE), QCARGA(ELE) 14 FORMAT(12X, I3, 3X, I6, 8X, F10.5, 16X, F10.5) END DO !!!LECTURA DE LOS DATOS DE LOS CAPACITORES IF (NOCAP .NE. 0) THEN DO ELE=1, NOCAP READ(1, *)NODCAP(ELE), QCAP(ELE) END DO WRITE(2,15) 15 FORMAT(3/,9X,'----DATOSDELOSC A P A C I T O R E S ----') WRITE(2,16) 16 FORMAT(2/,10X,'CAPACITOR',4X,'NODO',4X,'POTENCIA REACTIVA (MVAR)') DO ELE=1,NOCAP WRITE(2,17)ELE, NODCAP(ELE), QCAP(ELE) 17 FORMAT(12X, I3, 3X, I6, 8X, F10.5) END DO END IF !!!DATOS DE LOS FLUJOS DE POTENCIA DO NODO=1, NONODOS READ(1,*) TIPON(NODO), MAGV(NODO), ANGV(NODO)

```
V(NODO) =
(MagV(NODO)*COSD(ANGV(NODO))) + ((0.0,1.0)*MagV(NODO)*SIND(ANGV(NODO))
)))
     END DO
     WRITE(2,27)
 27 FORMAT(4/, 10X, ' --- V O L T A J E S D E L E S T
U D I O ---',&
                 2/,21x,'---DEFLUJOS---')
     WRITE(2, 28)
 28 FORMAT(2/,16X,'NODO',5X,'TIPO DE NODO',9X,'VOLTAJE
(P.U.)', 5X, 'P GENERADA (P.U.)', &
                 5X, 'Q GENERADA (P.U.)', 5X, 'P DE CARGA(P.U.)', &
                5X, 'Q DE CARGA (P.U.)')
     DO NODO=1, NONODOS
           IF (TIPON(NODO) .EQ. 1) THEN
                WRITE(2,29)NODO, MAGV(NODO), ANGV(NODO)
           29 FORMAT (12X, I6, 10X, 'SLACK', 6X, F10.5, '<', X, F10.5)
           END IF
           IF (TIPON(NODO) .EQ. 2) THEN
                WRITE(2,30)NODO, MAGV(NODO), ANGV(NODO)
           30 FORMAT (12X, 16, 10X, 'CARGA', 6X, F10.5, '<', X, F10.5)
           END IF
           IF (TIPON(NODO) .EQ. 0) THEN
                WRITE(2,31)NODO, MAGV(NODO), ANGV(NODO)
           31 FORMAT (12X, I6, 10X, 'GENER', 6X, F10.5, '<', X, F10.5)
           END IF
     END DO
     WRITE(*,*) NOFARM
     PAUSE
     ALLOCATE (TIPOFA(NOFARM))
   END SUBROUTINE LEEDATOS
```

C.3 SUBRUTINA LEEDATOSARM

SUBROUTINE LEEDATOSARM

USE mDATA01 USE mDATA03 USE mDATA09 IMPLICIT NONE INTEGER :: i WRITE(2,01) 01 FORMAT(4/,10X,'---DATOSDE LASF U E N T E S ---', &2/,21x,'---ARMONICAS----') READ (3,*) TipoFA(armon) IF (TipoFA(armon) .EQ. 1) THEN WRITE (2,02) armon 02 FORMAT(2/,10X,'--- LA FUENTE ARMONICA', I2, ' ES UN COMPENSADOR ESTATICO DE VARS') READ (3,*) NODFA, NOarm, QFA, Angdisp WRITE (2,03) NOarm, NODFA, QFA, Angdisp 03 FORMAT(2/,2X, 'NUMERO DE ARMONICAS INYECTADAS POR EL COMPENSADOR ESTATICO DE VARS', I5,/,2X,'EL COMPENSADOR ESTATICO DE VARS ESTA CONECTADO AL NODO', 16,& /,2X,'LA POTENCIA DEL COMPENSADOR ESTATICO DE VARS ES', F10.5,/,2X,'CON UN ANGULO DE DISPARO',F10.5) ALLOCATE (Arm(NOarm), IFA(NOarm), angFA(NOarm), Iarm(NOarm)) DO i=1, NOarm READ (3,*) Arm(i), IFA(i), AngFA(i) Iarm(i) = IFA(i) * COSD(AngFA(i)) + ((0.0, 1.0) *IFA(i) * SIND(AngFA(i))) END DO WRITE(2,04)04 FORMAT(2/,12X, 'ARMONICA',6X, '% DE LA CORRIENTE FUNDAMENTAL', 6X, 'ANG DE DEFASAMIENTO') DO i=1, NOarm WRITE(2,05) Arm(i), IFA(i), AngFA(i) 05 FORMAT(12X,14,17X,F10.5,17X,F10.5) END DO ELSE IF (TipoFA(armon) .EQ. 2) THEN

WRITE (2,12) armon 12 FORMAT(2/,10X,'--- LA FUENTE ARMONICA', I2, ' ES UN HORNO DE ARCO') READ (3,*) NODFA, NOarm, QFA, Angdisp WRITE (2,13) NOarm, NODFA, QFA, Angdisp FORMAT(2/,2X, 'NUMERO DE ARMONICAS INYECTADAS POR EL 13 HORNO DE ARCO', I5,/,2X,'EL HORNO DE ARCO ESTA CONECTADO AL NODO', I6,& /,2X,'LA POTENCIA DEL HORNO DE ARCO ES', F10.5,/,2X,'CON UN FACTOR DE POTENCIA',F10.5) ALLOCATE (Arm(NOarm), IFA(NOarm), angFA(NOarm), Iarm(NOarm)) DO i=1, NOarm READ (3,*) Arm(i), IFA(i), AngFA(i) Iarm(i) = IFA(i) * COSD(AngFA(i)) + ((0.0,1.0) *IFA(i) * SIND(AngFA(i))) END DO WRITE(2, 14)14 FORMAT(2/,12X, 'ARMONICA',6X, '% DE LA CORRIENTE FUNDAMENTAL', 6X, 'ANG DE DEFASAMIENTO') DO i=1, NOarm WRITE(2,15) Arm(i), IFA(i), AngFA(i) FORMAT(12X, I4, 17X, F10.5, 17X, F10.5) 15 END DO END IF END SUBROUTINE **C.4 SUBRUTINA CDATOS** SUBROUTINE CDATOS

USE mDATA01 USE mDATA02 USE mDATA03 USE mDATA04 USE mDATA05 USE mDATA06 USE mDATA07

```
USE mDATA08
     USE mDATA09
     IMPLICIT NONE
     INTEGER :: i
     REAL :: aux
     COMPLEX :: aux1
     Ih = (0.0, 0.0)
     DO i=1, NOcap
                                                        0.0+((0.0,-
           Zcap(i)
1.0)*((magV(nodcap(i))**2)/(Qcap(i)/MVAbase))))
           Zcap(i) = Zcap(i) / Arm(h)
     END DO
     DO i=1, NOcarga
           aux = 0.0
           R(i) = magV(nodcarga(i))**2/(Pcarga(i)/MVAbase)
           aux = (Qcarga(i)/Pcarga(i)) - 0.74
           XL(i) = 0.0 + ((0.0, 1.0)*(R(i)/(6.7*aux)))
           XL(i) = Arm(h) * XL(i)
           XS(i) = 0.0 + (0.0, 1.0) * 0.073 * R(i)
           XS(i) = Arm(h) * XS(i)
           Zcar(i) = ((R(i) * XL(i)) / (R(i) + XL(i))) + XS(i)
     END DO
     DO i=1, NOlin
           Zlin(i) = rpq(i) + ((0.0, 1.0) * ipq(i) * Arm(h))
           Ylin(i) = (0.0, 1.0) * ypq2(i) * Arm(h)
     END DO
     DO i=1, NOgen
           Zgen(i) = (0.0,1.0) * Igen(i) * Arm(h)
     END DO
     aux = 0.0
```

```
aux1 = (0.0, 0.0)
aux = (QFA/MVAbase)
aux1 = aux*COSD(angDisp)+((0.0,1.0)* aux * SIND(angDisp))
Ih(nodFA) = aux1/(SQRT(3.0)*CONJG(V(nodFA)))
WRITE(*,*) 'Corr', Ih(nodFA)
PAUSE
Ih(nodFA) = Ih(nodFA) * Iarm(h)
END SUBROUTINE
```

C.5 SUBRUTINA CYBUS

```
SUBROUTINE CYBUS
     USE mDATA01
     USE mDATA02
     USE mDATA03
     USE mDATA04
     USE mDATA05
     USE mDATA06
     USE mDATA07
     USE mDATA08
     USE mDATA09
    IMPLICIT NONE
!ESPECIFICACION DE VARIABLES
    INTEGER :: nodo, ele, i, j
!!LLENA LA DIAGONAL PRINCIPAL DE YBUS
   PRINT *, 'LLEGUE A CYBUS'
     Yh = (0.0, 0.0)
   DO nodo=1,NOnodos
        DO ele=1, NOlin
            IF ((p(ele) .EQ. nodo) .OR. (q(ele) .EQ. nodo)) THEN
```

```
Yh(nodo,nodo) = Yh(nodo,nodo) + 1.0 / Zlin(ele)
+ Ylin(ele)
             END IF
        END DO
    END DO
     DO i=1, NOgen
          Yh(Nodgen(i),Nodgen(i)) = Yh(Nodgen(i),Nodgen(i)) +
1.0 / Zgen(i)
     END DO
     IF (NOtrafo .NE. 0) THEN
          DO i=i, NOtrafo
                Yh(Nodtrafo(i),Nodtrafo(i))=
Yh(Nodtrafo(i),Nodtrafo(i)) + 1.0 / Ztrafo(i)
          END DO
     END IF
     IF (NOcap .NE. 0) THEN
          DO i=1, NOcap
                Yh(Nodcap(i),Nodcap(i)) = Yh(Nodcap(i),Nodcap(i))
+ 1.0 / Zcap(i)
          END DO
     END IF
     DO i=1,NOcarga
          Yh(Nodcarga(i),Nodcarga(i)) =
Yh(Nodcarga(i),Nodcarga(i)) + 1.0 / Zcar(i)
     END DO
!LLENA ELEMENTOS FUERA DE LA DIAGONAL PRINCIPAL
    DO i=1,NOnodos
        DO j=i+1, NOnodos
            DO ele=1, NOlin
                IF ((i .EQ. p(ele)) .AND. (j .EQ. q(ele))) THEN
```

```
Yh(i,j) = Yh(i,j) - 1.0 / Zlin(ele)

Yh(j,i) = Yh(i,j)

END IF

END DO

END DO

END DO

IMPRIME LA MATRIZ YDUS TRIANGULAR SUPERIOR
```

PRINT *, 'TERMINE YBUS'

END SUBROUTINE

C.6 SUBRUTINA SOLFLUJ

```
SUBROUTINE SOLFLUJ
```

USE mDATA01
USE mDATA02
USE mDATA03
USE mDATA04
USE mDATA05
USE mDATA06
USE mDATA07
USE mDATA08
USE mDATA09
IMPLICIT NONE
INTEGER :: i, j
CALL LINCG(NOnodos,Yh,NOnodos,invYh,NOnodos)
CALL MCRCR(NOnodos,NOnodos,invYh,NOnodos,NOnodos,1,Ih,NOnodos,NOnodos ,1,Vh,NOnodos)
DO i=1 , NOnodos
<pre>Vharm(i,h) = Vh(i)</pre>
! WRITE(*,*) Vh(i)

! PAUSE

Vharmon(i, Arm(h), Armon) = Vh(i)

END DO

END SUBROUTINE

C.7 SUBRUTINA THD

```
SUBROUTINE THD
     USE mDATA01
     USE mDATA03
     USE mDATA08
     USE mDATA09
     IMPLICIT NONE
     INTEGER :: i, j
     REAL :: aux, aux2
     ALLOCATE (THDV(NOnodos))
     THDV = 0.0
     DO i=1, NOnodos
          DO j=1, NOarm
               THDV(i) = THDV(i) + (ABS(Vharm(i,j))**2)
          END DO
          THDV(i) = SQRT(THDV(i))/ABS(magV(i))
     END DO
     WRITE (2,01)
01 FORMAT(3/,9X,'---- R E S U L T A D O S D E L
    P E N E T R A C I O N ----',&
А
              /,26X,'----ARMONICA----')
     WRITE(2,02)
02
            FORMAT(2/,02X,'NODO',2X,'ARMONICA',4X,'MAG.
                                                           DE
VOLTAJE',4X,'ANG. DE VOLTAJE')
     DO i=1, NOnodos
          DO j=1, NOarm
          aux = ABS(Vharm(i,j))
          IF ((REAL(Vharm(i,j)) .LT. 0) .AND. (IMAG(Vharm(i,j))
.GT. 0)) THEN
               aux2 = ATAND(IMAG(Vharm(i,j))/REAL(Vharm(i,j)))
               aux2 = aux2 + 180.0
```

```
ELSE IF ((REAL(Vharm(i,j)) .LT. 0)
                                                       .AND.
(IMAG(Vharm(i,j)) .LT. 0)) THEN
               aux2 = ATAND(IMAG(Vharm(i,j))/REAL(Vharm(i,j)))
               aux2 = aux2 - 180.0
          ELSE
               aux2 = ATAND(IMAG(Vharm(i,j))/REAL(Vharm(i,j)))
          END IF
          WRITE (2,03) i, Arm(j), aux, aux2
         FORMAT (2X,I3, 5X, I3, 4X,F13.6, 8X,F13.6)
     03
          END DO
     END DO
     WRITE(2,04)
04
    FORMAT(3/,9X,'----DISTORCIONARM
O N I C A ----',&
              /,25X,'----TOTAL----')
     WRITE(2,05)
05
  FORMAT(2/,02X, 'NODO',11X, 'THD')
     DO i=1, NOnodos
          WRITE (2,06) i, THDV(i)
         FORMAT (2X, I3, 4X, F13.6)
     06
     END DO
END SUBROUTINE
C.8 SUBRUTINA THDTOT
     SUBROUTINE THDTOT
     USE MDATA01
```

```
USE MDATA01
USE MDATA03
USE MDATA08
USE MDATA09
```

IMPLICIT NONE

```
INTEGER :: I, J, K
REAL :: AUX, AUX2
COMPLEX,ALLOCATABLE :: VHARMONTOT(:,:)
```

ALLOCATE (THDVTOT(NONODOS), VHARMONTOT(NONODOS, 50))

THDVTOT = 0.0DO I=1, NONODOS DO J=1, 50 DO K=1, NOFARM VHARMONTOT(I,J) = VHARMONTOT(I,J) + VHARMON(I,J,K) END DO END DO END DO DO I=1, NONODOS DO J=1, 50 THDVTOT(I) = THDVTOT(I) +(ABS(VHARMONTOT(I,J))**2) END DO THDVTOT(I) = SQRT(THDVTOT(I))/ABS(MAGV(I)) END DO WRITE (2,01) 01 FORMAT(3/,9X,'---- R E S U L T A D O S DE LA PENETRACION----',& /,26X,'----A R M O N I C A ТОТА LASFUENTES----') Τ. DΕ WRITE(2,02) 02 FORMAT(2/,02X,'NODO',2X,'ARMONICA',4X,'MAG. DE VOLTAJE', 4X, 'ANG. DE VOLTAJE') DO I=1, NONODOS DO J=1, 50 IF (VHARMONTOT(I,J) .NE. (0.0,0.0)) THEN AUX = ABS(VHARMONTOT(I,J)) IF ((REAL(VHARMONTOT(I,J)) .LT. 0) .AND. (IMAG(VHARMONTOT(I,J)) .GT. 0)) THEN AUX2 =ATAND(IMAG(VHARMONTOT(I,J))/REAL(VHARMONTOT(I,J))) AUX2 = AUX2 + 180.0
ELSE IF ((REAL(VHARMONTOT(I,J)) .LT. 0) .AND. (IMAG(VHARMONTOT(I,J)) .LT. 0)) THEN AUX2 =ATAND(IMAG(VHARMONTOT(I,J))/REAL(VHARMONTOT(I,J))) AUX2 = AUX2 - 180.0ELSE AUX2 =ATAND(IMAG(VHARMONTOT(I,J))/REAL(VHARMONTOT(I,J))) END IF WRITE (2,03) I, J, AUX, AUX2 FORMAT (2X, I3, 5X, I3, 4X, F13.6, 8X, F13.6) 03 END IF END DO END DO WRITE(2,04) FORMAT(3/,9X,'----DISTORCIONARMO 04 N I C A ----',& /,25X,'----TOTAL----') WRITE(2,05) 05 FORMAT(2/,02X, 'NODO',11X, 'THDTOTAL') DO I=1, NONODOS WRITE (2,06) I, THDVTOT(I) FORMAT (2X, I3, 4X, F13.6) 06 END DO END SUBROUTINE

C.9 ARCHIVO DE ENTRADA

Para este programa se realizaron dos archivos de entrada, el primero se muestra en la figura C.1, contiene los datos de la red con la siguiente estructura:

Núm	Nú de	Núm	Núm	Núm de	Potencia
de	líneas	de	de	capacitores	base
nodos		generadores	cargas		

Nodo de envio	Nodo de recepción	Impedancia de la línea	Admitancia en paralelo	Diferenciador entre línea y transformador 0 = Trafo 1 = Linea
---------------	----------------------	---------------------------	---------------------------	---

Nodo del	Impedancia del	Potencia Activa
generador	generador	generada

Nodo de la	Potencia Activa	Potencia Reactiva	Magnitud
carga	demandada	demandada	de Voltaje
-			en la carga

Nodo del	Potencia Resetion del	Magnitud de
capacitor	capacitor	voltaje en el capacitor

Tipo de Nodo	Magnitu	Ángulo del
1 = Slack	d del	Voltaje
0 = Nodo PV	Voltaje	
2 = Nodo PQ	-	

📕 5NOD	EJ1_A.d	at - Bloc	de notas					_ 8 ×
Archivo	Edición	Formato	Ver Ayud	a				
5	7	2	з	1	100.0			*
			_					
1		1	z	0.02	0.06	0.03	0	
		1	з	0.08	0.24	0.025	0	
		2	з	0.06	0.18	0.02	0	
		2	4	0.06	0.18	0.02	0	
1		2	5	0.04	0.12	0.015	0	
		з	4	0.01	0.03	0.01	0	
		4	5	0.08	0.24	0.025	0	
		1	0.000	1				
		2	0.001					
		з	45.0	20.0				
		4	80.0	30.0				
		5	50.0	25.0				
		-						
		4	30.0					
		•						
		1	1.05	0.0				
		ñ	1.00 -	2 6944				
		2	0.9796 -	6 2114				
		2	0.9776 -	6 9222				
		2	0.9922 -	6 6962				
		2	0.0022 -	0.0503				

Fig. C.1 Primer archivo de entrada con los datos de la red

El segundo archivo de entrada se muestra en la figura C.2, y contiene los datos de la fuente de armónicas con la siguiente estructura:

Núm de	
fuentes	
armónicas	

Tipo de fuente armónica

Nodo de la fuente	Núm de armónicas inyectadas por la fuente	Potencia Reactiva de la fuente	Ángulo de disparo en caso que exista
	I		

Armónica	% de la	Angulo de
	corriente	desfasamiento
	fundamental	con la
		corriente
		fundamental

📕 5NOE	DEJ1_B.d	at - Bloc o	de no	tas		_ 8 ×
Archivo	Edición	Formato	Ver	Ayuda		
μ						A
1						
	5	8		40.0	90.0	
	5	5.05		0.0		
	7	2.59		0.0		
	11	1.05		0.0		
	13	0.75		0.0		
	17	0.44	1	0.0		
	19	0.35		0.0		
	23	0.24		0.0		
	25	0.2		0.0		
I						

Fig. C.2 Segundo archivo de entrada con los datos de la fuente armónica C.3 ARCHIVO DE SALIDA

El archivo de salida consta de tres partes que se muestra en las figuras C.3, C.4 y C.5. La primer parte (figura C.3) es la reimpresión de los datos de la red, la segunda (figura C.4) la reimpresión de los datos de las fuentes armónicas y la última os voltajes armónicos calculados, además de las Distorsión Armónica Total.

```
📕 5nod1.res - Bloc de notas
                                                                                                                                                                                                                                                             _ 8 ×
Archivo Edición Formato Ver Ayuda
                                                       DE
                                                                     ENTRADA----
                                                                                                                                                                                                                                                                     NUMERO DE NODOS = 5
NUMERO DE LINEAS = 7
NUMERO DE GENERADORES =
2
NUMERO DE CARGAS = 3
NUMERO DE CAPACITORES = 1
                ----DATOS DE LINEAS----

        IMPEDANCIAS Y ADMITANCIAS PRIMITIVAS

        LINEA NE
        NR
        IMPEDANCIA SERIE
        ypq/2

        1
        1
        2
        .02000 +.06000+j +.030000.0 +j

        2
        1
        3
        .08000 +.24000+j +.025000.0 +j

        3
        2
        3
        .06000 +.18000+j +.020000.0 +j

        4
        2
        4
        .06000 +.12000+j +.020000.0 +j

        5
        2
        5
        .04000 +.12000+j +.010000.0 +j

        6
        3
        4
        .01000 +.03000+j +.010000.0 +j

        7
        4
        5
        .08000 +.24000+j +.025000.0 +j

                 ----DATOS DE LOS TRAFOS. ----
                 IMPEDANCIAS Y ADMITANCIAS PRIMITIVAS
TRANSF. NE NR IMPEDANCIA SERIE
                                                                                                     ypq/2
                 ---- DATOS DEL GENERADOR----
                   GENERADOR NODO IMPEDANCIA DEL GEN
                        1 1
2 2
                                                     .00010
                 ---- DATOS DE LAS CARGAS----
                                    NODO POTENCIA ACTIVA (MW). POTENCIA REACTIVA (MVAR)
                      CARGA
                                                                                                                                                                                                                                                                  -
                                     •
```


a should be should be had	^
Archivo Edicion Formaco ver Ayuda	
DATOS DE LOS CAPACITORES	▲
CAPACITOR NODO POTENCIA REACTIVA (MVAR)	
1 4 30.0000	
D E F L U J O S	
1 Slack 1.0500< 00000	
2 Gener 1.00000< -2.69440	
3 Carga .97960< -6.21140	
4 Carga .97760< -6.92320	
5 Carga .99220< -6.69630	
D X I O S D B B X S FOEN I E S	
A R M O N I C A S	
LA FUENTE ARMONICA 1 ES UN COMPENSADOR ESTATICO DE VARS	
NUMERO DE ARMONICAS INVECTADAS POR EL COMPENSADOR ESTATICO DE VARS 8	
EL COMPENSADOR ESTATICO DE VARS ESTA CONECTADO AL NODO 5	
LA POTENCIA DEL COMPENSADOR ESTATICO DE VARS ES 40.00000	
CON UN ANGULO DE DISPARO 90.00000	
ARMONICA % DE LA CORRIENTE FUNDAMENTAL ANG DE DEFASAMIENTO	
5 5.05000 .00000	
7 2.59000 .00000	
11 1.05000 .00000	
13 .75000 .00000	
17 . 44000 .00000	
19 .35000 .00000	
23 .24000 .00000 25 20000 .00000	
23 .2000 .0000	

Fig. C.4 Segunda Sección del archivo de salida

-

📕 5nodi	1.res - Bloc d	e notas		
Archivo	Edición Form	nato Ver Ayuda		
	R	ESULTA	DOSDEL	A PENETRACION
		A	RMONICA	
NODO	ARMONICA	MAG. DE VOLTAJE	ANG. DE VOLTAJE	
1	5	.000076	108.121900	
1	7	.000052	58.543140	
1	11	.000010	-4.728740	
1	13	.000005	-16.527260	
1	17	.000002	-40.393100	
1	19	.000001	-66.914120	
	23	.000000	162.952300	
	25	.000000	142.819900	
Z	5	.005705	137.756300	
2		.002964	118.915500	
2	11	.001536	147.369300	
2	13	.001586	148.113900	
2	10	.002009	137.443200	
2	19	.002875	20.683900	
2	25	.002133	19 029250	
5	23	164046	99 919260	
	7	121008	50 809350	
3	11	029739	-11 688730	
	13	019437	-22 731200	
Å Å	17	012373	-42 191330	
3	19	013101	-61 169170	
3	23	009242	-146 112400	
3	25	.005472	-169.176800	
4	5	.206027	103.588100	
4	7	.150595	55.324210	
4	11	.035146	-6.193572	
4	13	.020785	-16.899410	
4	17	.012009	-35.559470	
4	19	.011373	-53.897960	
4	23	.005677	-136.225000	
4	25	.002530	-156.226600	
5	5	.517212	148.764300	
5	7	.327645	145.767800	
5	11	.228912	150.374000	
5	13	.219951	148.304700	
5	17	.260092	136.653500	
5	19	.326777	119.839200	
5	23	.266187	38.673360	
5	25	.150037	18.173770	
	D	ISTORS	ION ARMO	ONICA
Topo		T 0	I A L	
I NODO		THD		•

Fig. C.5 Tercera Sección del archivo de salida

APÉNDICE D

PROGRAMAS PARA LA IDENTIFICACIÓN DE FUENTES Armónicas

D.1 Método de Heydt

D.1.1 RUTINA PRINCIPAL HARM_EST

PROGRAM HARM_EST

USE mDATA01	
USE mDATA02	
USE mDATA03	
USE mDATA04	
USE mDATA05	
USE mDATA06	
USE mDATA07	
USE MSIMSLMS	
USE MSIMSLC	
IMPLICIT NONE	
CALL PRESENTA	
CALL LEEDATOS	
ALLOCATE	(Zcap(NOcap),
Ycap(NOcap),Zcar(NOcarga),Ycar(NOcarga),	R(NOcarga),
XL(NOcarga))	
ALLOCATE	(XS(NOcarga),
<pre>Zlin(NOlin),Ylin(NOlin),Zgenh(NOgen))</pre>	
ALLOCATE (Yh(NOnodos, NOnodos))	
ALLOCATE (MATG(desc,desc), MATH(desc, NOmed)	n), MATJ(NOmedh,
desc), MATK(NOmedh,NOmedh))	
ALLOCATE (MATJT(desc,NOmedh), A	AUX1(desc,desc),
invAUX1(desc,desc))	
ALLOCATE (PinvJ(desc,NOmedh), Ibk(NOmec	dh),Vbk(NOmedh),
AUX2(desc,1),AUX3(desc,1))	
ALLOCATE	
(AUX4(desc,NOmean),MING(desc,desc),AUX5(desc,NOme	an),AUX6(desc,N
Umean), AUX/(desc,1))	
ALLOCATE (IDU(desc), magi(desc),	angi(desc),
ALLOCATE (inwyh/Nonodog Nonodog)	Wharm (NOnodea)
Wharmon(NOnodos NOharm))	vital (NOHOGOS),

DO h=1, NOharm

CALL CDATOS

CALL CYBUS

CALL MATR

CALL ESTIM

END DO

CALL THD

END PROGRAM

D.1.2 SUBRUTINA LEEDATOS

!LEE LOS DATOS DEL ARCHIVO DE DATOS DADO

SUBROUTINE LEEDATOS USE mDATA01 USE mDATA02 USE mDATA03 USE mDATA04 USE mDATA05 USE mDATA06 USE mDATA07 IMPLICIT NONE INTEGER :: nod, ele, i, j, l, m CHARACTER(40) :: FECHA INTEGER(4) hora(3) CALL ITIME (hora) CALL DATE (FECHA) READ(1,*)NOnodos, NOlin, NOgen, NOtrafo, NOcarga, NOcap, NOmedh, MVAbase !!LECTURA DE LOS DATOS DE LAS LÍNEAS ALLOCATE (p(NOlin), q(NOlin), tipoE(NOlin), zpq(NOlin), ypq2(NOlin), indtr(NOlin)) zpq = (0.0, 0.0)ypq2 = (0.0, 0.0)!! ESCRIBE FECHA Y HORA EN EL ARCHIVO DE SALIDA

```
WRITE(2,18)archres
              3/, '>>NOMBRE DEL ARCHIVO DE SALIDA : ', A20)
 18
   FORMAT (
     WRITE (2,19)FECHA
19
    FORMAT (3/,'>> FECHA : ',A40)
   WRITE(2,20) hora
 20 FORMAT (3/,'>> HORA : ',1X,I2,':',I2,':',I2)
!LEE DATOS DE CADA LINEA
   DO ele=1, NOlin
          WRITE (*,*) ele
          PAUSE
          READ(1,*) p(ele), q(ele), zpq(ele), tipoE(ele)
        IF( tipoE(ele) .EQ. 1 )THEN
           READ(1,*) ypq2(ele)
       END IF
   END DO
! IMPRIME LOS DATOS DE LA LINEAS
     WRITE(2,01)
 01 FORMAT(3/,9X,'---- D A T O S D E E N T R A D
A ----')
     WRITE(2,02) NOnodos, NOlin, NOgen, NOtrafo, Nocarga, Nocap
02 FORMAT(2/, 'NUMERO DE NODOS = ',13,1/, 'NUMERO DE LINEAS =
', I3, 1/, 'NUMERO DE GENERADORES = ', I3, &
             1/, 'NUMERO DE TRANFORMADORES = ', I3, 1/, 'NUMERO DE
CARGAS = ',I3, 1/, 'NUMERO DE CAPACITORES = ',I3)
     WRITE(2,03)
 03 FORMAT(3/,9X,'---- D A T O S D E L I N E A S
---- ' )
     WRITE(2,04)
 04 FORMAT(2/,19X,'IMPEDANCIAS Y ADMITANCIAS PRIMITIVAS',&
             1/,10X,'LINEA',2X,'NE',5X,'NR',4X,'IMPEDANCIA
SERIE',9X,'ypq/2')
     DO ele=1,NOlin
          WRITE(2,05)ele, p(ele), q(ele), zpq(ele), ypq2(ele)
      05
FORMAT(12X,I3,I6,I6,F10.5,SP,F8.5,SS,'j',3X,F8.5,SP,F8.5,SS,'j')
```

END DO

```
1111111111111111
!!LECTURA DE DATOS DE LOS GENERADORES
    ALLOCATE( nodgen(NOgen), Zgen(NOgen))
    DO ele=1, NOgen
        READ(1,*)nodgen(ele), Zgen(ele)
    END DO
!IMPRIME LOS DATOS DE LOS GENERADORES
    WRITE(2,06)
06 FORMAT(3/,9X,'----DATOSDELGENER
A D O R ----')
    WRITE(2,07)
07 FORMAT(2/,10X,'GENERADOR',2X,'NODO',4X,'IMPEDANCIA DEL GEN')
    DO ele=1,NOgen
        WRITE(2,08)ele, nodgen(ele), Zgen(ele)
     08 FORMAT(12X, I3, 3X, I6, 2X, F10.5, SP, F8.5, SS, 'j')
    END DO
1111111111111111
!!LECTURA DE DATOS DE LOS TRANSFORMADORES
    ALLOCATE (
                 nodtrafo(NOtrafo), Ztrafo(NOtrafo),
Ptrafo(NOtrafo))
    IF (NOtrafo .NE. 0) THEN
        DO ele=1, NOtrafo
             READ(1,*)nodtrafo(ele), Ztrafo(ele), Ptrafo(ele)
        END DO
!IMPRIME LOS DATOS DE LOS TRANSF.
        WRITE(2,09)
    09 FORMAT(3/,9X,'----DATOSDELTRA
NSFORMADOR----')
        WRITE(2, 10)
       FORMAT(2/,10X,'TRANSFORMADOR',2X,'NODO',4X,'IMPEDANCIA
    10
DEL TRANS.',4X, 'POTENCIA (MW)')
```

DO ele=1,NOtrafo

Apéndice D

WRITE(2,11)ele, nodtrafo(ele), Ztrafo(ele), Ptrafo(ele) 11 FORMAT(12X, I3, 3X, I6, 2X, F10.5, SP, F8.5, SS, 'j', 7X, F10.5) END DO ELSE WRITE(*,*) 'EL SISTEMA NO TIENE CONECTADO NINGUN TRANSFORMADOR ' END IF 111111111111111 !!LECTURA DE DATOS DE LAS CARGAS ALLOCATE (nodcarga (NOcarga), Qcarga (NOcarga), Pcarga(NOcarga), magVcarga(NOcarga)) DO ele=1, NOcarga READ(1,*)nodcarga(ele), Pcarga(ele), Qcarga(ele), magVcarga(ele) END DO !!IMPRIME LOS DATOS DE LA CARGA WRITE(2, 12)12 FORMAT(3/,9X,'---- D A T O S D E L A S C A R G A S ----') WRITE(2, 13)FORMAT(2/,12X,'CARGA',4X,'NODO',4X,'POTENCIA ACTIVA 13 (MW).',4X,'POTENCIA REACTIVA (MVAR)', 4X,'MAG. DEL VOLTAJE DE LA CARGA ') DO ele=1,NOcarga WRITE(2,14)ele, nodcarga(ele), Pcarga(ele), Qcarga(ele), magVcarga(ele) 14 FORMAT(12X,I3,3X,I6,8X,F10.5,16X,F10.5,16X,F10.5) END DO 1111111111111111 !!LECTURA DE DATOS DE LOS CAPACITORES ALLOCATE(nodcap(NOcap), Qcap(NOcap), magVcap(NOcap)) IF (NOcap .NE. 0) THEN

DO ele=1, NOcap READ(1,*)nodcap(ele), Qcap(ele), magVcap(ele) END DO !!IMPRIME LOS DATOS DE LOS CAPACITORES WRITE(2,15) 15 FORMAT(3/,9X,'---- D A T O S D E L O S CAPACITORES----') WRITE(2, 16)16 FORMAT(2/,10X,'CAPACITOR',4X,'NODO',4X,'POTENCIA REACTIVA (MVAR)',4X,'MAG. DE VOLTAJE DEL CAPACITOR') DO ele=1,NOcap WRITE(2,17)ele, nodcap(ele), Qcap(ele), magVcap(ele) 17 FORMAT(12X, I3, 3X, I6, 8X, F10.5, 8X, F10.5) END DO ELSE WRITE(*,*) 'EL SISTEMA NO TIENE CONECTADO NINGUN CAPACITOR' END IF ALLOCATE (magV(NOnodos), angV(NOnodos), V(NOnodos)) DO nod=1, NOnodos READ (1,*) magV(nod), angV(nod) ! WRITE(*,*) magV(nod), angV(nod) 1 PAUSE V(nod) = (magV(nod) * COSD(angV(nod))) + ((0.0,1.0) *(magV(nod) * SIND(angV(nod)))) END DO !!!!LEE LAS MEDICIONES DE LAS ARMÓNICAS (VOLTAJES Y CORRIENTES) READ (1,*) NOharm ALLOCATE (harm(NOharm), nodh(NOmedh,NOharm), magVh(NOmedh,NOharm))

```
(thetah(NOmedh,NOharm), magIh(NOmedh,NOharm),
     ALLOCATE
angIh(NOmedh,NOharm))
     ALLOCATE (Vh(Nomedh,NOharm), Ih(NOmedh,NOharm))
     DO i=1, NOharm
          READ (1,*) harm(i)
          DO j=1, NOmedh
                 READ (1,*) nodh(j,i), magVh(j,i), thetah(j,i),
magIh(j,i), angIh(j,i)
          END DO
     END DO
     DO i=1, NOharm
          DO j=1, NOmedh
                Vh(j,i)
                                                                =
magVh(j,i)*(COSD(thetah(j,i))+(0.0,1.0)*SIND(thetah(j,i)))
                Ih(j,i) =
magIh(j,i)*(COSD(angIh(j,i))+(0.0,1.0)*SIND(angIh(j,i)))
          END DO
     END DO
     desc = NOnodos - NOmedh
     ALLOCATE (nodes(desc))
     DO i=1, NOnodos
          1 = 0
          DO j=1, NOmedh
                IF (i .NE. nodh(j,1)) THEN
                      1=1+1
                      IF (L .EQ. NOmedh) THEN
                           m = m+1
                           nodes(m) = i
                     END IF
                END IF
```

END DO END DO DO i=1, desc WRITE (*,*) i, nodes(i) PAUSE END DO !IMPRIME LOS DATOS DE LA FUENTE WRITE(2,30) 30 FORMAT(3/,9X,'---- D A T O S D E L A S MEDICIONES----') DO i=1, NOharm WRITE(2,31) 31 FORMAT(2/,10X, 'HARMONICA') WRITE(2,32)harm(i) FORMAT(12X,I3) 32 WRITE(2,33) 33 FORMAT(2/,10X,'NODO',4X,'MAG. DEL VOLTAJE',4X,'ANG. DEL VOLTAJE',4X,'MAG. DE CORRIENTE',4X,'ANG. DE LA CORRIENTE') DO j=1, NOmedh WRITE(2,34)nodh(j,i), magVh(j,i), thetah(j,i), magIh(j,i), angIh(j,i) 34 FORMAT(12X, I3, 8X, F10.5, 8X, F10.5, 8X, F10.5, 8X, F10.5) END DO END DO END SUBROUTINE **D.1.3 SUBRUTINA MATR** SUBROUTINE MATR USE mDATA01 USE mDATA07 IMPLICIT NONE INTEGER :: i, j

!DIVIDIENDO LA MATRIZ YBUS Y REACOMODANDOLA PARA LA ESTIMACION

```
DO i=1, desc
          DO j=1, desc
                MATG(i,j) = Yh(nodes(i), nodes(j))
          END DO
     END DO
     DO i=1, desc
          DO j=1, NOmedh
                MATH(i,j) = Yh(nodes(i),nodh(j,h))
          END DO
     END DO
     DO i=1, NOmedh
          DO j=1, desc
                MATJ(i,j) = Yh(nodh(i,h),nodes(j))
          END DO
     END DO
     DO i=1, NOmedh
          DO j=1, NOmedh
                MATK(i,j) = Yh(nodh(i,h),nodh(j,h))
          END DO
     END DO
!!!CALCULO DE LA PSEUDOINVERSA DE J
     DO i=1, NOmedh
          DO j=1, desc
                MATJT(j,i) = REAL(MATJ(i,j)) + ((0.0,-1.0) *
IMAG(MATJ(i,j)))
          END DO
     END DO
```

CALL MCRCR(desc,NOmedh,MATJT,desc,NOmedh,desc,MATJ,NOmedh,desc,desc,A UX1,desc)

CALL LINCG(desc,AUX1,desc,invAUX1, desc)

! CALL LINRG (desc,AUXI,desc,invAUXI,desc)

CALL

```
MCRCR(desc,desc,invAUX1,desc,desc,NOmedh,MATJT,desc,desc,NOmedh,
PinvJ,desc)
```

END SUBROUTINE

D.1.4 SUBRUTINA ESTIM

```
SUBROUTINE ESTIM
USE mDATA01
USE mDATA07
IMPLICIT NONE
INTEGER :: i, j
DO i = 1, NOmedh
Ibk(i) = Ih(i,h)
Vbk(i) = Vh(i,h)
```

END DO

CALL

MCRCR(desc,NOmedh,PinvJ,desc,NOmedh,1,Ibk,NOmedh,desc,1,AUX2,desc)

```
CALL
```

MCRCR(desc,desc,MATG,desc,desc,1,AUX2,desc,desc,1,AUX3,desc)

CALL

MCRCR(desc,NOmedh,PinvJ,desc,NOmedh,NOmedh,MATK,NOmedh,desc,NOme dh,AUX4,desc)

DO i=1, desc DO j=1,desc MING(i,j) = -1.0 * MATG(i,j) END DO END DO

```
CALL
MCRCR(desc,desc,MING,desc,desc,NOmedh,AUX4,desc,desc,NOmedh,AUX5
,desc)
     DO i=1, desc
           DO j=1, NOmedh
                AUX6(i,j) = AUX5(i,j) + MATH(i,j)
           END DO
     END DO
     CALL
MCRCR(desc,NOmedh,AUX6,desc,NOmedh,1,Vbk,NOmedh,desc,1,AUX7,desc
)
!
     THDI(i) = 0.0
     Iharm = 0.0
     DO i=1, desc
           Ibu(i) = Aux3(i,1) + AUX7(i,1)
           Iharm(nodes(i)) = Ibu(i)
!
           WRITE(*,*) nodes(i), Iharm(nodes(i)), Ibu(i)
!
           PAUSE
     END DO
     CALL LINCG(NOnodos, Yh, NOnodos, invYh, NOnodos)
     CALL
MCRCR(NOnodos, NOnodos, invYh, NOnodos, NOnodos, 1, Iharm, NOnodos, NOno
dos,1,Vharm,NOnodos)
     DO i=1, NOnodos
           Vharmon(i,h) = Vharm(i)
     END DO
     WRITE(2,10)
10
     FORMAT(/,'R E S U L T A D O S',/)
     WRITE(2,11)
     FORMAT(2/,10X,'NODO',4X,'CORRIENTE (NUM COMPL.)',4X,'MAG.
11
CORRIENTE',4X,'ANG. DE CORRIENTE',/)
     DO i=1, desc
```

```
magI(i) = sqrt(REAL(Ibu(i))**2 + IMAG(Ibu(i))**2)
     END DO
     DO i=1, desc
          IF ((REAL(Ibu(i)) .GT. 0.0) .AND. (IMAG(Ibu(i)) .GE.
0.0)) THEN
                angl(i) = ATAND(IMAG(Ibu(i)) / REAL(Ibu(i)))
          ELSE IF ((REAL(Ibu(i)) .LT. 0.0) .AND. (IMAG(Ibu(i))
.GT. 0.0)) THEN
                 angI(i) = ATAND(IMAG(Ibu(i)) / REAL(Ibu(i)))
                 angI(i) = angI(i) + 180
          ELSE IF ((REAL(Ibu(i)) .LT. 0.0) .AND. (IMAG(Ibu(i))
.LT. 0.0)) THEN
                angI(i) = ATAND(IMAG(Ibu(i)) / REAL(Ibu(i)))
                 angI(i) = angI(i) - 180
          ELSE IF ((REAL(Ibu(i)) .GT. 0.0) .AND. (IMAG(Ibu(i))
.LT. 0.0)) THEN
                angI(i) = ATAND(IMAG(Ibu(i)) / REAL(Ibu(i)))
          ELSE IF (REAL(Ibu(i)) .EQ. 0.0) THEN
               angI(i) = 0.0
          END IF
     END DO
     DO i=1, desc
          WRITE(2,34)nodes(i), REAL(Ibu(i)), IMAG(Ibu(i)),
magI(i), angI(i)
      34 FORMAT(12X,I3,8X,F10.5,'+i',F10.5,8X,F10.5,8X,F10.5)
     END DO
     END SUBROUTINE
     D.1.5 SUBRUTINA THD
```

SUBROUTINE THD

```
USE mDATA01
     USE mDATA02
     USE mDATA07
     IMPLICIT NONE
     INTEGER :: i, j
     REAL :: auxi, auxi2
     ALLOCATE (THDV(NOnodos))
     THDV = 0.0
     DO i=1, NOnodos
          DO j=1, NOharm
               THDV(i) = THDV(i) + (ABS(Vharmon(i,j))**2)
          END DO
          THDV(i) = SQRT(THDV(i))/ABS(magV(i))
     END DO
    WRITE (2,01)
01 FORMAT(3/,9X,'---- R E S U L T A D O S D E
                                                          L
    PENETRACION----',&
А
               /,26X,'----ARMONICA----')
     WRITE(2,02)
            FORMAT(2/,02X,'NODO',2X,'ARMONICA',4X,'MAG.
02
                                                           DE
VOLTAJE', 4X, 'ANG. DE VOLTAJE')
     DO i=1, NOnodos
          DO j=1, NOharm
          WRITE(*,*) i,j, Vharmon(i,j)
          PAUSE
          END DO
     END DO
     DO i=1, NOnodos
          DO j=1, NOharm
          WRITE(*,*) i,j, Vharmon(i,j)
          PAUSE
```

auxi = ABS(Vharmon(i,j))

IF ((REAL(V (IMAG(Vharmon(i,j)) .GT. (Tharmon(i,j))))) THEN	.LT.	0)	.AND.
<pre>auxi2 ATAND(IMAG(Vharmon(i,j))/F auxi2 = auxi2</pre>	REAL(Vharmon(i,j)) uxi2 + 180.0))		=
ELSE IF (() (IMAG(Vharmon(i,j)).LT.(REAL(Vharmon(i,j)))) THEN) .LT.	0)	.AND.
<pre>auxi2 ATAND(IMAG(Vharmon(i,j))/F auxi2 = auxi2</pre>	REAL(Vharmon(i,j)) uxi2 - 180.0))		=
ELSE				
auxi2 ATAND(IMAG(Vharmon(i,j))/F	REAL(Vharmon(i,j))))		=
END IF				
WRITE (2,03) i, 03 FORMAT (2X,I3, END DO	harm(j), auxi, a 5X, I3, 4X,F13.6,	uxi2 8X,F13.6	5)	
END DO				
WRITE(2,04) 04 FORMAT(3/,9X,' D 0 N I C A',& /,25X,' WRITE(2,05) 05 FORMAT(2/,02X,'NODO',1	I S T O R T O T A L .1X,'THD')	C I O ')	N A	R M
DO i=1, NOnodos				
WRITE (2,06) i, 06 FORMAT (2X,I3,	THDV(i) 4X,F13.6)			
END DO END SUBROUTINE				

D.2ARCHIVO DE ENTRADA

En las figuras D.1 y D.2, se muestra el archivo de entrada para el estimador. La

estructura del archivo de entrada es:

Núm	Nú de	Núm	Núm de	Núm	Núm de	Núm de	Potencia
de	líneas	de	transformadores	de	capacitoes	nodos	base
nodos		generadores		cargas		medidos	

Nodo de envio	Nodo de	Impedancia	Diferenciador entre
	recepción	de la línea	línea y transformador
	_		0 = Trafo
			1 = Linea
Admitancia en			

paralelo

Nodo del	Impedancia del	Potencia Activa
generador	generador	generada

Nodo de la carga	Potencia Activa	Potencia Reactiva	Magnitud
	demandada	demandada	de Voltaje
			en la carga

Nodo del	Potencia	Magnitud de
capacitor	Reactiva del	Voltaje en el
	capacitor	capacitor

Número
de
armónicas

Armónica	Nodo	Magnitud	Ángulo	Magnitud	Ángulo
		del	del	de la	de la
		Voltaje	Voltaje	Corriente	Corriente

📕 harn	n2.dat - I	Bloc de na	otas									×
Archivo	Edición	Formato	Ver Ay	/uda								
5	7	2		0	3	1	3	100.0				-
		1		2	(0.02,	0.06)	1					
					(0.0,0.	03)						
		1		3	(0.08,0	0.24)	1					
		2		2	(0.0,0.	1043) 1181	1					
		2		5	(0.00,0	.021	1					
		2		4	(0.06,0).18)	1					
					(0.0,0.	02)						
		2		5	(0.04,0	0.12)	1					
					(0.0, 0	0.015)						
		3		4	(0.01,0	0.03)	1					
		4		5	(0.0,0.	.01) 1 241	1					
		-		5	(0.00,0	.0251	-					
					1							
		1		(0.0,0.	0001)	0.0						
		Z		(0.0,0.	.001)	30.0						
		3		45.0	20.0	0.9796						
		4		80.0	30.0	0.9776						
		5		50.0	25.0	0.9922						
					0.0000							
		4		30.0	0.9776							
		8										
		5										
				1	0.00007	7	108.122		0.0	0.0		
				2	0.0057		137.756		0.0	0.0		
		7		4	0.20602		103.588		0.0	0.0		
				1	0.0000	5	58.5431		0.0	0.0		
				2	0.00296	5	118.915		0.0	0.0		
				4	0.15059	,	55.3242		0.0	0.0		
		11	L									
				1	0.00001	L	-4.7287		0.0	0.0		-1
4											Þ	

Fig. D.1 Primera Sección del archivo de entrada por el método de Heydt

Edición Formato V	er Ayuda						
3	45.0	20.0 0.	9796				
4	80.0	30.0 0.	9776				
5	50.0	25.0 0.	9922				
4	30.0	0.9776					
8							
5							
	1	0.00007		108.122	0.0	0.0	
	2	0.0057		137.756	0.0	0.0	
	4	0.20602		103.588	0.0	0.0	
7							
	1	0.00005		58.5431	0.0	0.0	
	2	0.00296		118.915	0.0	0.0	
	4	0.15059		55.3242	0.0	0.0	
11							
	1	0.00001		-4.7287	0.0	0.0	
	2	0.00153		147.369	0.0	0.0	
	4	0.03514		-6.1935	0.0	0.0	
13		0.000005		1.6 505			
	1	0.000003		-16.527	0.0	0.0	
	4	0.001386		16 9004	0.0	0.0	
17	7	0.020703		-10.0994	0.0	0.0	
11	1	0.000002		-40.3931	0.0	0.0	
	2	0.002009		137.4432	0.0	0.0	
	4	0.012009		-35.5594	0.0	0.0	
19	-						
	1	0.000001		-66.9141	0.0	0.0	
	2	0.002573		120.6839	0.0	0.0	
	4	0.011373		-53.8979	0.0	0.0	
23							
	1	0.0		0.0	0.0	0.0	
	2	0.00215		39.513	0.0	0.0	
	4	0.00567		-136.22	0.0	0.0	
25							
	1	0.0		0.0	0.0	0.0	
	2	0.00122		19.0293	0.0	0.0	
	4	0.00253		-156.22	0.0	0.0	

Fig. C.2 Segunda Sección del archivo de entrada por el método de Heydt

D.3 ARCHIVO DE SALIDA

El archivo de salida consta de tres partes que se muestra en las figuras D.3, D.4 y D.5. La primer parte (figura D.3) es la reimpresión de los datos de la red, la segunda (figura D.4) la reimpresión de las mediciones armónicas y la ultima (figura D.5) las corrientes estimadas.

```
📕 harm2.res - Bloc de notas
                                                                                                                                          _ 8 ×
Archivo Edición Formato Ver Ayuda
 > HORA : 21:38:49
                                                                                                                                              ---- D & T O S D E E N T R & D & ----
NUMERO DE NODOS = 5
NUMERO DE LINEAS = 7
NUMERO DE CENERADORES = 2
NUMERO DE TRANFORMADORES = 0
NUMERO DE CARGAS = 3
NUMERO DE CARGAS = 1
         ---- DATOS DE LINEAS----
                  IMPEDANCIAS Y ADMITANCIAS PRIMITIVAS
                   LINEA NE
              2
                  2
2
3
4
         ---- D Å T O S D E L G E N E R Å D O R ----
          GENERADOR NODO IMPEDANCIA DEL GEN
                           .00000 +.00010j
.00000 +.00100j
             1 1
2 2
         ---- DATOS DE LAS CARGAS----
            CARGA NODO POTENCIA ACTIVA (MW). POTENCIA REACTIVA (MVAR) MAG. DEL VOLTAJE DE LA CARGA
                      3
4
5
                                  45.00000
                                                            20.
                                                              . 00000
                                                                                        97960
              2
                                  80.00000
50.00000
                                                           30.00000
25.00000
                                                                                       .97760
.99220
```

Fig. D.3 Primer Sección del archivo de salida por el método de Heydt

harn Archivo	n 2.res - Bloc (Edición For	de not ^{mato}	as Ver A	vuda				X
	D	A T	0	S D E	LASMI	EDICIONE	s	-
	HARMON 5	ICA						
	NODO 1 2 4	MAG	. DEL	VOLTAJE .00007 .00570 .20602	ANG. DEL VOLTAJI 108.12200 137.75600 103.58800	E MAG. DE CORRIENTE .00000 .00000 .00000	ANG. DE LA CORRIENTE .00000 .00000 .00000	
	HARMON 7	ICA						
	NODO 1 2 4	MAG	. DEL	VOLTAJE .00005 .00296 .15059	ANG. DEL VOLTAJI 58.54310 118.91500 55.32420	E MAG. DE CORRIENTE .00000 .00000 .00000	ANG. DE LA CORRIENTE .00000 .00000 .00000	
	HARMON 11	ICA						
	NODO 1 2 4	MAG	. DEL	VOLTAJE .00001 .00153 .03514	ANG. DEL VOLTAJI -4.72870 147.36900 -6.19350	E MAG. DE CORRIENTE .00000 .00000 .00000	ANG. DE LA CORRIENTE .00000 .00000 .00000	_
	HARMON 13	ICA						
	NOD 0 1 2 4	MAG	. DEL	VOLTAJE .00000 .00159 .02079	ANG. DEL VOLTAJI -16.52700 148.11390 -16.89940	E MAG. DE CORRIENTE .00000 .00000 .00000	ANG. DE LA CORRIENTE .00000 .00000 .00000	
	HARMON 17	ICA						
	NODO	MAG	. DEL	VOLTAJE	ANG. DEL VOLTAJI	E MAG. DE CORRIENTE	ANG. DE LA CORRIENTE	

Fig. D.4 Segunda Sección del archivo de salida por el método de Heydt

📕 harn	n2.res - Bloc d	e notas ato Ver Avuda						
HIGHNO	Edicion Form	aco voi myada						
	NODO 1 2 4	MAG. DEL VOLTAJE .00000 .00122 .00253	ANG. DEL V .00 19.02 -156.22	70LTAJE MAG. 0000 2930 2000	DE CON .00000 .00000	RRIENTE A))	ANG. DE LA CORRIENTE .000000 .000000 .00000	
R E	SULT	A D O S						
	NODO	CORRIENTE (NUM COM	IPL.) MAG.	CORRIENTE	ANG. DI	CORRIENTE		
	3	00206+i 13777+i	00048	.00211		193.01300		
	NODO	CORRIENTE (NUM COM	1110050 MAG.	CORRIENTE	ANG. DI	CORRIENTE		
	з	00031+i	.00058	.00066		242.43280		
	5	.07004+i	. 59784	. 60193		83.31815		
	NODO	CORRIENTE (NUM COM	1PL.) MAG.	CORRIENTE	ANG. DI	CORRIENTE		
	5	.02834+i	.24192	. 24357		83.31858		
	NODO	CORRIENTE (NUM COM	MPL.) MAG	CORRIENTE	ANG. DI	CORRIENTE		
	3 5	.00000+i .02036+i	.00000 .17340	.00001 .17459		204.67960 83.30286		
	NODO	CORRIENTE (NUM COM	MPL.) MAG	CORRIENTE	ANG. DI	CORRIENTE		
	3	00001+i 01194+i	00002	.00002		237.68960 83.30428		
	NODO	CORRIENTE (NUM COM	IPL.) MAG.	CORRIENTE	ANG. DE	CORRIENTE		
	з	.00002+i	.00001	.00002		33.44311		
	5	.00950+i	.08090	.08145		83.30394		
	NODO	CORRIENTE (NUM COM	IPL.) MAG.	CORRIENTE	ANG. DI	CORRIENTE		
	3	.00002+1	.05536	.00004		299.12370 83.31184		
	NODO	CORRIENTE (NUM COM	HPL.) MAG	CORRIENTE	ANG. DI	CORRIENTE		
	3 5	.00003+i .00539+i	00006 .04595	.00007 .04627		295.12020 83.31561		_

Fig. D.5 Tercera Sección del archivo de salida por el método de Heydt

D.4 MÉTODO DE NGUYEN

D.4.1 RUTINA PRINCIPAL HARM_EST

PROGRAM HARM_EST

```
USE mDATA01
     USE mDATA02
     USE mDATA03
     USE mDATA04
     USE mDATA05
     USE mDATA06
     USE mDATA07
     USE mDATA08
     USE MSIMSLMS
     USE MSIMSLC
     IMPLICIT NONE
     INTEGER :: i
     CALL PRESENTA
     CALL LEEDATOS
     CALL MEDERR
     ALLOCATE
                 (Zcap(NOcap), Zcar(NOcarga),
                                                   R(NOcarga),
XL(NOcarga))
     ALLOCATE (XS(NOcarga), Zlin(NOlin),Ylin(NOlin),Zgen(NOgen))
     ALLOCATE (Yh(NOnodos, NOnodos))
     ALLOCATE (Z(NOnodos), VEH(NOnodos,descT), Vest(descT))
     ALLOCATE (invH(NOnodos, NOnodos))
     ALLOCATE (angest(NOnodos), magest(NOnodos))
     ALLOCATE
                       (Iharm(NOnodos),
                                                 Vharm(NOnodos),
invYh(NOnodos,NOnodos))
     ALLOCATE (angVharm(NOnodos), magVharm(NOnodos))
     ALLOCATE (resV(NOmedVh), restotV(NOmedVh))
     ALLOCATE
                  (Aux1(descT,descT), invAUX1(descT,descT),
VEHT(descT,NOnodos))
                     (PinvH(descT,NOnodos), THDI(descI),
     ALLOCATE
Vharmon(NOnodos, NOharm))
     DO h=1, NOharm
          CALL CDATOS
          CALL CYBUS
          CALL VECTORZ
          CALL VECTORH
```

CALL ESTIM

CALL VOLTHARM

END DO

CALL THD

END PROGRAM

D.4.2 SUBRUTINA LEEDATOS

!LEE LOS DATOS DEL ARCHIVO DE DATOS DADO

SUBROUTINE LEEDATOS

USE mDATA01 USE mDATA02 USE mDATA03 USE mDATA04 USE mDATA05 USE mDATA06

IMPLICIT NONE

INTEGER :: nod, ele, i, j, l, m

CHARACTER(40) :: FECHA

INTEGER(4) hora(3)

CALL ITIME (hora)

CALL DATE (FECHA)

READ(1,*)NOnodos, NOlin, NOgen, NOcarga, NOcap, NOmedVh, NOmedIh, NOharm, MVAbase, error

!!LECTURA DE LOS DATOS DE LAS LÍNEAS

ALLOCATE (p(NOlin), q(NOlin), tipoE(NOlin), rpq(NOlin), ipq(NOlin), ypq2(NOlin), indtr(NOlin), zpq(NOlin))

zpq = (0.0, 0.0)ypq2 = (0.0, 0.0)

!!ESCRIBE FECHA Y HORA EN EL ARCHIVO DE SALIDA WRITE(2,18)archres 18 FORMAT(3/,'>>NOMBRE DEL ARCHIVO DE SALIDA : ',A20)

```
WRITE (2,19)FECHA
19 FORMAT (3/,'>> FECHA : ',A40)
```

```
WRITE(2,20) hora
 20 FORMAT (3/,'>> HORA : ',1X,12,':',12,':',12)
!LEE DATOS DE CADA LINEA
   DO ele=1, NOlin
          READ(1,*) p(ele), q(ele), rpq(ele), ipq(ele),
ypq2(ele) ,indtr(ele)
          zpq(ele) = rpq(ele) + ((0.0, 1.0) * ipq(ele))
   END DO
! IMPRIME LOS DATOS DE LA LINEAS
     WRITE(2,01)
01 FORMAT(3/,9X,'---- D A T O S D E E N T R A D
A ----')
     WRITE(2,02) NOnodos, NOlin, NOgen, NOtrafo, Nocarga, Nocap
02 FORMAT(2/, 'NUMERO DE NODOS = ',13,1/, 'NUMERO DE LINEAS =
', I3, 1/, 'NUMERO DE GENERADORES = ', I3, &
             1/, 'NUMERO DE TRANFORMADORES = ', I3, 1/, 'NUMERO DE
CARGAS = ',I3, 1/, 'NUMERO DE CAPACITORES = ',I3)
     WRITE(2,03)
03 FORMAT(3/,9X,'---- D A T O S D E L I N E A S
---- ' )
     WRITE(2,04)
04 FORMAT(2/,19X,'IMPEDANCIAS Y ADMITANCIAS PRIMITIVAS',&
            1/,10X,'LINEA',2X,'NE',5X,'NR',4X,'IMPEDANCIA
SERIE',9X,'ypq/2', 9X, 'TIPO DE ELEM')
     DO ele=1,NOlin
          IF (indtr(ele) .EQ. 0) THEN
               WRITE(2,05)ele, p(ele), q(ele), rpq(ele),
ipq(ele), ypq2(ele)
           05
FORMAT(12X,I3,I6,I6,3X,F10.5,'+j',F8.5,3X,F8.5,5X,'LINEA')
          ELSE IF (indtr(ele) .EQ. 1) THEN
               WRITE(2,25)ele, p(ele), q(ele), rpq(ele),
ipq(ele), ypq2(ele)
           25
FORMAT(12X,I3,I6,I6,3X,F10.5,'+j',F8.5,3X,F8.5,5X,'TRAFO')
          END IF
```

```
END DO
111111111111111
!!LECTURA DE DATOS DE LOS GENERADORES
    PAUSE
    ALLOCATE( nodgen(NOgen), igen(NOgen))
    DO ele=1, NOgen
         READ(1,*)nodgen(ele), Igen(ele)
    END DO
!IMPRIME LOS DATOS DE LOS GENERADORES
    WRITE(2,06)
06 FORMAT(3/,9X,'---- D A T O S D E L G E N E R
A D O R ----')
    WRITE(2,07)
07 FORMAT(2/,10X,'GENERADOR',2X,'NODO',4X,'IMPEDANCIA DEL GEN')
    DO ele=1,NOgen
         WRITE(2,08)ele, nodgen(ele), Igen(ele)
     08 FORMAT(12X, I3, 3X, I6, 2X, F10.5)
    END DO
111111111111111
!!LECTURA DE DATOS DE LAS CARGAS
    ALLOCATE (
                 nodcarga(NOcarga), Qcarga(NOcarga),
Pcarga(NOcarga), magVcarga(NOcarga))
    DO ele=1, NOcarga
         READ(1,*)nodcarga(ele), Pcarga(ele), Qcarga(ele),
magVcarga(ele)
    END DO
!!IMPRIME LOS DATOS DE LA CARGA
    WRITE(2, 12)
12 FORMAT(3/,9X,'---- D A T O S D E L A S C A
R G A S ----')
    WRITE(2,13)
13
        FORMAT(2/,12X,'CARGA',4X,'NODO',4X,'POTENCIA
                                                ACTIVA
(MW).',4X,'POTENCIA REACTIVA (MVAR)', 4X,'MAG. DEL VOLTAJE DE LA
CARGA ' )
```

DO ele=1,NOcarga WRITE(2,14)ele, nodcarga(ele), Pcarga(ele), Qcarga(ele), magVcarga(ele) 14 FORMAT(12X, I3, 3X, I6, 8X, F10.5, 16X, F10.5, 16X, F10.5) END DO 1111111111111111 !!LECTURA DE DATOS DE LOS CAPACITORES ALLOCATE(nodcap(NOcap), Qcap(NOcap), magVcap(NOcap)) IF (NOcap .NE. 0) THEN DO ele=1, NOcap READ(1,*)nodcap(ele), Qcap(ele), magVcap(ele) END DO !!IMPRIME LOS DATOS DE LOS CAPACITORES WRITE(2,15) 15 FORMAT(3/,9X,'---- D A T O S D E L O S CAPACITORES----') WRITE(2, 16)FORMAT(2/,10X,'CAPACITOR',4X,'NODO',4X,'POTENCIA 16 REACTIVA (MVAR)',4X,'MAG. DE VOLTAJE DEL CAPACITOR') DO ele=1,NOcap WRITE(2,17)ele, nodcap(ele), Qcap(ele), magVcap(ele) 17 FORMAT(12X, I3, 3X, I6, 8X, F10.5, 8X, F10.5) END DO ELSE WRITE(*,*) 'EL SISTEMA NO TIENE CONECTADO NINGUN CAPACITOR ' END IF

!!LECTURA DE LOS VOLTAJES DE FLUJOS

ALLOCATE (magV(NOnodos), angV(NOnodos), V(NOnodos))

DO nod=1, NOnodos

```
READ (1,*) magV(nod), angV(nod)
         V(nod) = (magV(nod) * COSD(angV(nod))) + ((0.0,1.0) *
(magV(nod) * SIND(angV(nod))))
    END DO
!!!!LEE LAS MEDICIONES DE LAS ARMÓNICAS (VOLTAJES Y CORRIENTES)
                   (harm(NOharm),
                                       nodVh(NOmedVh,NOharm),
    ALLOCATE
nodIh(NOmedIh,NOharm), magVh(NOmedVh,NOharm))
    ALLOCATE
              (thetah(NOmedVh,NOharm),
                                       magIh(NOmedIh,NOharm),
angIh(NOmedIh,NOharm))
    ALLOCATE (Vh(NomedVh,NOharm), Ih(NOmedIh,NOharm))
    DO i=1, NOharm
         READ (1,*) harm(i)
    END DO
    DO i=1, NOharm
         DO j=1, NOmedVh
               READ (1,*) nodVh(j,i), magVh(j,i), thetah(j,i)
         END DO
    END DO
    DO i=1, NOharm
         DO j=1, NOmedVh
               Vh(j,i)
magVh(j,i)*(COSD(thetah(j,i))+(0.0,1.0)*SIND(thetah(j,i)))
         END DO
    END DO
    DO i=1, NOharm
         DO j=1, NOmedIh
              READ (1,*) nodIh(j,i), magIh(j,i), angIh(j,i)
         END DO
    END DO
```

=

```
DO i=1, NOharm
           DO j=1, NOmedIh
                Ih(j,i)
magIh(j,i)*(COSD(angIh(j,i))+(0.0,1.0)*SIND(angIh(j,i)))
           END DO
     END DO
     descV = NOnodos - NOmedVh
     descI = NOnodos - NOmedIh
     descT = descV + descI
     ALLOCATE (nodesV(descV), nodesI(descI))
     DO i=1, NOnodos
           1 = 0
           DO j=1, NOmedVh
                IF (i .NE. nodVh(j,1)) THEN
                      1=1+1
                      IF (1 .EQ. NOmedVh) THEN
                           m = m+1
                           nodesV(m) = i
                      END IF
                END IF
           END DO
     END DO
     m = 0
     DO i=1, NOnodos
           1 = 0
           DO j=1, NOmedIh
                IF (i .NE. nodIh(j,1)) THEN
                      1=1+1
                      IF (l .EQ. NOmedIh) THEN
```

```
m = m+1
                          nodesI(m) = i
                     END IF
               END IF
          END DO
     END DO
     DO i=1, descI
          WRITE (*,*) i, nodesI(i)
          PAUSE
     END DO
!IMPRIME LAS MEDICIONES
          WRITE(2,30)
     30 FORMAT(3/,9X,'---- D A T O S D E L A S
MEDICIONES----')
     DO i=1, NOharm
          WRITE(2,31)
        FORMAT(2/,10X,'HARMONICA')
     31
          WRITE(2,32)harm(i)
     32
          FORMAT(12X,I3)
          WRITE(2, 33)
     33 FORMAT(2/,10X,'NODO',4X,'MAG. DEL VOLTAJE',4X,'ANG. DEL
VOLTAJE')
          DO j=1, NOmedVh
               WRITE(2,34)nodVh(j,i), magVh(j,i), thetah(j,i)
           34 FORMAT(12X, I3, 8X, F10.5, 8X, F10.5)
          END DO
          WRITE(2, 35)
     35 FORMAT(2/,10x,'NODO',4x,'MAG. DE CORRIENTE',4x,'ANG. DE
CORRIENTE')
          DO j=1, NOmedIh
               WRITE(2,36)nodIh(j,i), magIh(j,i), angIh(j,i)
           36 FORMAT(12X,I3,8X,F10.5,8X,F10.5)
```

END DO

```
END DO
```

END SUBROUTINE

D.4.3 SUBRUTINA VECTORZ

```
SUBROUTINE VECTORZ

USE mDATA01

USE mDATA07

USE mDATA08

IMPLICIT NONE

INTEGER :: i, j

Z = (0.0,0.0)

DO i=1, NOmedIh

Z(nodIh(i,h)) = Ih(i,h)

END DO

DO i=1, NOnodos

DO j=1, NOmedVh

Z(i) = Z(i) - (Vh(j,h) * Yh(i,nodVh(j,h)))

END DO

END DO
```

END SUBROUTINE

D.4.4 SUBRUTINA VECTORH

```
SUBROUTINE VECTORH
USE mDATA01
USE mDATA07
USE mDATA08
IMPLICIT NONE
INTEGER :: i,j, k
VEH = (0.0, 0.0)
DO i=1, descI
```

```
VEH(nodesI(i),i) = (-1.0,0.0)
     END DO
     DO i=1, NOnodos
           DO j=1, descV
                k = j + descI
                VEH(i, k) = Yh(i, nodesV(j))
           END DO
     END DO
     DO i=1, NOnodos
!
!
           DO j=1, descT
           WRITE(2,35)i, j, REAL(VEH(i,j)), IMAG(VEH(i,j))
!
      35 FORMAT('V(',I3',',I3,')=',8X,F10.5,'+',F10.5,'i')
!
           END DO
!
!
     END DO
     DO i=1, NOnodos
           DO j=1, descT
                VEHT(j,i) = REAL(VEH(i,j)) + ((0.0,-1.0) *
IMAG(VEH(i,j)))
           END DO
     END DO
     DO i=1, NOnodos
!
!
           DO j=1, descT
                WRITE(*,*) i, j, VEH(4,7)
!
!
                PAUSE
           END DO
!
!
     END DO
     CALL
MCRCR(descT, NOnodos, VEHT, descT, NOnodos, descT, VEH, NOnodos, descT, d
escT,AUX1,descT)
```

CALL LINCG(descT,AUX1,descT,invAUX1, descT)

! CALL LINRG (desc,AUXI,desc,invAUXI,desc)

CALL

MCRCR(descT,descT,invAUX1,descT,descT,NOnodos,VEHT,descT,descT,NOnodos,PinvH,descT)

END SUBROUTINE

D.4.5 SUBRUTINA ESTIM

SUBROUTINE ESTIM

USE mDATA01 USE mDATA07 USE mDATA08

IMPLICIT NONE

INTEGER :: i, j

! CALL LINCG(NOnodos, VEH, NOnodos, invH, NOnodos)

CALL

MCRCR(descT,NOnodos,PinvH,descT,NOnodos,1,Z,NOnodos,descT,1,Vest ,descT)

!!! IMPRIMIENDO RESULTADOS

```
WRITE(2,10)harm(h)
10 FORMAT(/,'R E S U L T A D O S H A R M O N
I C A:',I3, /)
```

WRITE(2,11)
11 FORMAT(2/,10X,'NODO',4X,'CORRIENTE (NUM COMPL.)',4X,'MAG.
CORRIENTE',4X,'ANG. DE CORRIENTE',/)

DO i=1, NOnodos

magest(i) = sqrt(REAL(Vest(i))**2 + IMAG(Vest(i))**2)

END DO

DO i=1, NOnodos

IF ((REAL(Vest(i)) .GT. 0.0) .AND. (IMAG(Vest(i)) .GE. 0.0)) THEN

angest(i) = ATAND(IMAG(Vest(i)) / REAL(Vest(i)))

ELSE IF ((REAL(Vest(i)) .LT. 0.0) .AND. (IMAG(Vest(i)) .GT. 0.0)) THEN

```
angest(i) = ATAND(IMAG(Vest(i)) /
REAL(Vest(i)))
               angest(i) = angest(i) + 180
          ELSE
                IF ((REAL(Vest(i)) .LT. 0.0) .AND.
(IMAG(Vest(i)) .LT. 0.0)) THEN
               angest(i) = ATAND(IMAG(Vest(i))
                                                          /
REAL(Vest(i)))
               angest(i) = angest(i) - 180
          ELSE
                IF ((REAL(Vest(i)) .GT. 0.0) .AND.
(IMAG(Vest(i)) .LT. 0.0)) THEN
               angest(i) = ATAND(IMAG(Vest(i))
                                                          /
REAL(Vest(i)))
               angest(i) = angest(i)
          ELSE IF (REAL(Vest(i)) .EQ. 0.0) THEN
              angest(i) = 0.0
          END IF
     END DO
    DO i=1, descI
          WRITE(2,34)nodesI(i), REAL(Vest(i)), IMAG(Vest(i)),
magest(i), angest(i)
      34 FORMAT(12X,I3,8X,F10.5,'+i',F10.5,8X,F10.5,8X,F10.5)
          THDI(i) = THDI(i) + ABS(Vest(i)**2)
!
         WRITE(*,*) Vest(i), THDI(i), i
!
        PAUSE
    END DO
    WRITE(2,12)
    FORMAT(2/,10X, 'NODO',4X, 'VOLTAJE (NUM COMPL.)',4X, 'MAG.
12
VOLTAJE', 4X, 'ANG. DE VOLTAJE', /)
     DO i=1, descV
          j = i + descI
          WRITE(2,35)nodesV(i), REAL(Vest(j)), IMAG(Vest(j)),
magest(j), angest(j)
      35 FORMAT(12X,I3,8X,F10.5,'+i',F10.5,8X,F10.5,8X,F10.5)
```

END DO

END SUBROUTINE

D.4.6 SUBRUTINA VOLTHARM

```
SUBROUTINE VOLTHARM
     USE mDATA01
     USE mDATA07
     USE mDATA08
     IMPLICIT NONE
     INTEGER :: i,j
     Iharm = (0.0, 0.0)
     Vharm = (0.0, 0.0)
     magVharm = 0.0
     angVharm = 0.0
     DO i=1, descI
           Iharm(nodesI(i)) = Vest(i)
     END DO
     CALL LINCG(NOnodos, Yh, NOnodos, invYh, NOnodos)
     CALL
MCRCR(NOnodos, NOnodos, invYh, NOnodos, NOnodos, 1, Iharm, NOnodos, NOno
dos,1,Vharm,NOnodos)
     DO i=1, NOnodos
           Vharmon(i,h) = Vharm(i)
     END DO
     DO i=1, NOnodos
           magVharm(i)
                           = sqrt(REAL(Vharm(i))**2
                                                                 +
IMAG(Vharm(i))**2)
     END DO
     DO i=1, NOnodos
           IF ((REAL(Vharm(i)) .GT. 0.0) .AND. (IMAG(Vharm(i))
.GE. 0.0)) THEN
```
Apéndice D

```
angVharm(i) = ATAND(IMAG(Vharm(i)) /
REAL(Vharm(i)))
         ELSE IF ((REAL(Vharm(i)) .LT. 0.0) .AND.
(IMAG(Vharm(i)) .GT. 0.0)) THEN
               angVharm(i) = ATAND(IMAG(Vharm(i))
                                                        /
REAL(Vharm(i)))
              angVharm(i) = angVharm(i) + 180
         ELSE
              IF ((REAL(Vharm(i)) .LT. 0.0) .AND.
(IMAG(Vharm(i)) .LT. 0.0)) THEN
               angVharm(i) = ATAND(IMAG(Vharm(i))
                                                        /
REAL(Vharm(i)))
               angVharm(i) = angVharm(i) - 180
               IF ((REAL(Vharm(i)) .GT. 0.0) .AND.
         ELSE
(IMAG(Vharm(i)) .LT. 0.0)) THEN
               angVharm(i) = ATAND(IMAG(Vharm(i))
                                                        /
REAL(Vharm(i)))
               angVharm(i) = angVharm(i)
         ELSE IF (REAL(Vharm(i)) .EQ. 0.0) THEN
              angVharm(i) = 0.0
         END IF
    END DO
! DO i=1, NOnodos
!
 DO j=1, NOnodos
!
              WRITE(2,36)i, j, REAL(Yh(i,j)), IMAG(Yh(i,j))
          36
!
FORMAT(12X, 'Yh(',I3,',',I3,')=',F10.5,'+',F10.5,'j')
!
        END DO
   END DO
!
! DO i=1, NOnodos
!
         WRITE(2,37)i, REAL(Iharm(i)), IMAG(Iharm(i))
    37 FORMAT(12X, 'Ih(',I3,',1)=',F10.5, '+',F10.5, 'j')
!
!
   END DO
```

! DO i=1, NOnodos ! WRITE(*,*) I, magVharm(i), angVharm(i) ! PAUSE ! END DO WRITE(2, 12)FORMAT(2/,10X, 'NODO',4X, 'VOLTAJE (NUM COMPL.)',4X, 'MAG. 12 VOLTAJE', 4X, 'ANG. DE VOLTAJE', /) DO i=1, NOnodos WRITE(2,35)i, REAL(Vharm(i)), IMAG(Vharm(i)), magVharm(i), angVharm(i) 35 FORMAT(12X,I3,8X,F10.5,'+i',F10.5,8X,F10.5,8X,F10.5) END DO WRITE(2,13) harm(h), limconf ! FORMAT(2/'PARA LA ARMÓNICA', I3, 'SE TIENE ESTE VALOR DE LIM. !13 DE CONF.',F10.5/) END SUBROUTINE **D.4.7 SUBRUTINA THD** SUBROUTINE THD USE mDATA01 USE mDATA02 USE mDATA07 USE mDATA08 IMPLICIT NONE INTEGER :: i, j REAL :: auxi, auxi2 ALLOCATE (THDV(NOnodos)) THDV = 0.0DO i=1, NOnodos DO j=1, NOharm THDV(i) = THDV(i) + (ABS(Vharmon(i,j))**2)END DO write(*,*) THDV(i), magVharm(i), i

```
PAUSE
         THDV(i) = SQRT(THDV(i))/ABS(magV(i))
    END DO
    WRITE(2,04)
04
    FORMAT(3/,9X,'----DISTORCIONARM
O N I C A ----',&
              /,25X,'----TOTAL----')
    WRITE(2,05)
05 FORMAT(2/,02X,'NODO',11X,'THD')
    DO i=1, NOnodos
         WRITE (2,06) i, THDV(i)
    06
         FORMAT (2X, I3, 4X, F13.6)
    END DO
    END SUBROUTINE
```

D.5ARCHIVO DE ENTRADA

En las figuras D.6 y D.7, se muestra el archivo de entrada para el estimador. La estructura del archivo de entrada es:

Núm	Nú	Núm	Núm	Núm de	Núm de	Núm de	Núm. de	Potencia	Error
de	de	de	de	capacito	nodos	nodos	armónicas	base	
nodo	línea	generador	carga	_	con	con			
					medición	medición			
					de	de			
					voltaje	corriente			

Nodo de envio	Nodo de recepción	Impedancia de la línea	Admitancia en paralelo	Diferenciador entre línea y transformador 0 = Trafo 1 = Linea
---------------	----------------------	---------------------------	---------------------------	---

Nodo del	Impedancia del
generador	generador

Nodo de la carga	Potencia Activa	Potencia Reactiva	Magnitud
	demandada	demandada	de Voltaje
			en la carga

Nodo del	Potencia	Magnitud de
capacitor	Reactiva del	Voltaje en el
	capacitor	capacitor

Magnitud de	Ángulo de
voltaje	voltaje

Armónica

Nodo	Magnitud	Ángulo
	del	del
	Voltaje	Voltaje

Nodo	Magnitud de	Ángulo de Corriente
	Corriente	

📕 harm	1.dat - I	Bloc de no	otas									
Archivo	Edición	Formato	Ver Ayuda									
	7	2	3	1	3	2	8	100.0	5.0			
		,	2	0.02	0.00	0.00						
		1	2	0.02	0.06	0.03	0					
		2	3	0.06	0.18	0.025	n i					
		2	4	0.06	0.18	0.02	ñ					
		2	5	0.04	0.12	0.015	0					
		з	4	0.01	0.03	0.01	0					
		4	5	0.08	0.24	0.025	0					
		,	0 0001									
		2	0.000									
		2	0.001									
		з	45.0	20.0	0.9796							
		4	80.0	30.0	0.9776							
		5	50.0	25.0	0.9922							
		4	30.0	0.9776								
		1.05	0.0									
		1.0	-2.694	4								
		0.97	96 -6.213	.4								
		0.97	76 -6.923	2								
		0.99	22 -6.696	3								
		5										
		13										
		17										
		19										
		23										
		25										
			1	0.00007	7	108.122	2					
			2	0.0057		137.756	5					
			3	0.16404	1	99.9190	3					
			1	0.00008	5	58.5433	L					
			2	0.00296	5	118.91	5					
			3	0.121		50.8090	3					
			1	0.00003	L	-4.728	7					
			2	0.00153	3	147.369	÷					

Fig. D.6 Primera Sección del archivo de entrada para el método de Nguyen

📕 harm1.dat - Bloc de n	otas			x
Archivo Edición Eormato	Ver Avuda			
	1	0.00001	4 3003	
	2	0.00001	-14.7.359	_
	3	0.00133	-11 688	
	-	0.02010		
	1	0.000005	-16.527	
	2	0.001586	148.1139	
	з	0.018437	-22.7313	
	1	0.000002	-40.3931	
	2	0.002003	137.9932	
	0	0.012070	1	
	1	0.000001	-66.9141	
	2	0.002573	120.6839	
	з	0.013101	-61.1692	
	1	0.0	0.0	
	z	0.00215	39.513	
	3	0.00924	-140.11	
	1	0.0	0.0	
	2	0.00122	19.0293	
	з	0.00457	-169.17	
	2	0.0 0.0		
	4	0.0 0.0		
	2			
	4	0.0 0.0		
	-			
	2	0.0 0.0		
	4	0.0 0.0		
	2	0.0 0.0		
	4	0.0 0.0		
	2	0.0 0.0		
	4	0.0 0.0		
	2	0.0 0.0		
	4	0.0 0.0		
	_			
	z	0.0 0.0		
	*	0.0 0.0		
	2	0.0 0.0		
	4	0.0 0.0		
				Ţ
4				٢

Fig. D.7 Segunda Sección del archivo de entrada por el método de Nguyen

D.6 ARCHIVO DE SALIDA

El archivo de salida consta de tres partes que se muestra en las figuras D.8, D.9 y D.10 La primer parte (figura D.8) es la reimpresión de los datos de la red, la segunda (figura D.9) la reimpresión de las mediciones armónicas y la ultima (D.10) las corrientes y voltajes estimados.

Fig. D.9 Segunda Sección del archivo de salida por el método de Nguyen

Fig. D10 Tercera Sección del archivo de salida por el método de Nguyen